Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

det(\left(\begin{matrix}100&205&105\\200&408&207\\300&608&310\end{matrix}\right))
Find the determinant of the matrix using the method of diagonals.
\left(\begin{matrix}100&205&105&100&205\\200&408&207&200&408\\300&608&310&300&608\end{matrix}\right)
Extend the original matrix by repeating the first two columns as the fourth and fifth columns.
100\times 408\times 310+205\times 207\times 300+105\times 200\times 608=38146500
Starting at the upper left entry, multiply down along the diagonals, and add the resulting products.
300\times 408\times 105+608\times 207\times 100+310\times 200\times 205=38147600
Starting at the lower left entry, multiply up along the diagonals, and add the resulting products.
38146500-38147600
Subtract the sum of the upward diagonal products from the sum of the downward diagonal products.
-1100
Subtract 38147600 from 38146500.
det(\left(\begin{matrix}100&205&105\\200&408&207\\300&608&310\end{matrix}\right))
Find the determinant of the matrix using the method of expansion by minors (also known as expansion by cofactors).
100det(\left(\begin{matrix}408&207\\608&310\end{matrix}\right))-205det(\left(\begin{matrix}200&207\\300&310\end{matrix}\right))+105det(\left(\begin{matrix}200&408\\300&608\end{matrix}\right))
To expand by minors, multiply each element of the first row by its minor, which is the determinant of the 2\times 2 matrix created by deleting the row and column containing that element, then multiply by the element's position sign.
100\left(408\times 310-608\times 207\right)-205\left(200\times 310-300\times 207\right)+105\left(200\times 608-300\times 408\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the determinant is ad-bc.
100\times 624-205\left(-100\right)+105\left(-800\right)
Simplify.
-1100
Add the terms to obtain the final result.