\left| \begin{array} { l l l } { 100 } & { 205 } & { 105 } \\ { 200 } & { 408 } & { 207 } \\ { 300 } & { 608 } & { 310 } \end{array} \right|
Evaluate
-1100
Factor
-1100
Share
Copied to clipboard
det(\left(\begin{matrix}100&205&105\\200&408&207\\300&608&310\end{matrix}\right))
Find the determinant of the matrix using the method of diagonals.
\left(\begin{matrix}100&205&105&100&205\\200&408&207&200&408\\300&608&310&300&608\end{matrix}\right)
Extend the original matrix by repeating the first two columns as the fourth and fifth columns.
100\times 408\times 310+205\times 207\times 300+105\times 200\times 608=38146500
Starting at the upper left entry, multiply down along the diagonals, and add the resulting products.
300\times 408\times 105+608\times 207\times 100+310\times 200\times 205=38147600
Starting at the lower left entry, multiply up along the diagonals, and add the resulting products.
38146500-38147600
Subtract the sum of the upward diagonal products from the sum of the downward diagonal products.
-1100
Subtract 38147600 from 38146500.
det(\left(\begin{matrix}100&205&105\\200&408&207\\300&608&310\end{matrix}\right))
Find the determinant of the matrix using the method of expansion by minors (also known as expansion by cofactors).
100det(\left(\begin{matrix}408&207\\608&310\end{matrix}\right))-205det(\left(\begin{matrix}200&207\\300&310\end{matrix}\right))+105det(\left(\begin{matrix}200&408\\300&608\end{matrix}\right))
To expand by minors, multiply each element of the first row by its minor, which is the determinant of the 2\times 2 matrix created by deleting the row and column containing that element, then multiply by the element's position sign.
100\left(408\times 310-608\times 207\right)-205\left(200\times 310-300\times 207\right)+105\left(200\times 608-300\times 408\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the determinant is ad-bc.
100\times 624-205\left(-100\right)+105\left(-800\right)
Simplify.
-1100
Add the terms to obtain the final result.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}