Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

det(\left(\begin{matrix}1&2&0\\3&1&2\\0&3&1\end{matrix}\right))
Find the determinant of the matrix using the method of diagonals.
\left(\begin{matrix}1&2&0&1&2\\3&1&2&3&1\\0&3&1&0&3\end{matrix}\right)
Extend the original matrix by repeating the first two columns as the fourth and fifth columns.
1=1
Starting at the upper left entry, multiply down along the diagonals, and add the resulting products.
3\times 2+3\times 2=12
Starting at the lower left entry, multiply up along the diagonals, and add the resulting products.
1-12
Subtract the sum of the upward diagonal products from the sum of the downward diagonal products.
-11
Subtract 12 from 1.
det(\left(\begin{matrix}1&2&0\\3&1&2\\0&3&1\end{matrix}\right))
Find the determinant of the matrix using the method of expansion by minors (also known as expansion by cofactors).
det(\left(\begin{matrix}1&2\\3&1\end{matrix}\right))-2det(\left(\begin{matrix}3&2\\0&1\end{matrix}\right))
To expand by minors, multiply each element of the first row by its minor, which is the determinant of the 2\times 2 matrix created by deleting the row and column containing that element, then multiply by the element's position sign.
1-3\times 2-2\times 3
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the determinant is ad-bc.
-5-2\times 3
Simplify.
-11
Add the terms to obtain the final result.