Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

det(\left(\begin{matrix}1&1&1\\3&9&3^{3}\\4&4^{2}&4^{3}\end{matrix}\right))
Calculate 3 to the power of 2 and get 9.
det(\left(\begin{matrix}1&1&1\\3&9&27\\4&4^{2}&4^{3}\end{matrix}\right))
Calculate 3 to the power of 3 and get 27.
det(\left(\begin{matrix}1&1&1\\3&9&27\\4&16&4^{3}\end{matrix}\right))
Calculate 4 to the power of 2 and get 16.
det(\left(\begin{matrix}1&1&1\\3&9&27\\4&16&64\end{matrix}\right))
Calculate 4 to the power of 3 and get 64.
\left(\begin{matrix}1&1&1&1&1\\3&9&27&3&9\\4&16&64&4&16\end{matrix}\right)
Extend the original matrix by repeating the first two columns as the fourth and fifth columns.
9\times 64+27\times 4+3\times 16=732
Starting at the upper left entry, multiply down along the diagonals, and add the resulting products.
4\times 9+16\times 27+64\times 3=660
Starting at the lower left entry, multiply up along the diagonals, and add the resulting products.
732-660
Subtract the sum of the upward diagonal products from the sum of the downward diagonal products.
72
Subtract 660 from 732.
det(\left(\begin{matrix}1&1&1\\3&9&3^{3}\\4&4^{2}&4^{3}\end{matrix}\right))
Calculate 3 to the power of 2 and get 9.
det(\left(\begin{matrix}1&1&1\\3&9&27\\4&4^{2}&4^{3}\end{matrix}\right))
Calculate 3 to the power of 3 and get 27.
det(\left(\begin{matrix}1&1&1\\3&9&27\\4&16&4^{3}\end{matrix}\right))
Calculate 4 to the power of 2 and get 16.
det(\left(\begin{matrix}1&1&1\\3&9&27\\4&16&64\end{matrix}\right))
Calculate 4 to the power of 3 and get 64.
det(\left(\begin{matrix}9&27\\16&64\end{matrix}\right))-det(\left(\begin{matrix}3&27\\4&64\end{matrix}\right))+det(\left(\begin{matrix}3&9\\4&16\end{matrix}\right))
To expand by minors, multiply each element of the first row by its minor, which is the determinant of the 2\times 2 matrix created by deleting the row and column containing that element, then multiply by the element's position sign.
9\times 64-16\times 27-\left(3\times 64-4\times 27\right)+3\times 16-4\times 9
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the determinant is ad-bc.
144-84+12
Simplify.
72
Add the terms to obtain the final result.