\left| \begin{array} { l l l } { 1 } & { 0 } & { 2 } \\ { 3 } & { 5 } & { 2 } \\ { 6 } & { 6 } & { 7 } \end{array} \right|
Evaluate
-1
Factor
-1
Share
Copied to clipboard
det(\left(\begin{matrix}1&0&2\\3&5&2\\6&6&7\end{matrix}\right))
Find the determinant of the matrix using the method of diagonals.
\left(\begin{matrix}1&0&2&1&0\\3&5&2&3&5\\6&6&7&6&6\end{matrix}\right)
Extend the original matrix by repeating the first two columns as the fourth and fifth columns.
5\times 7+2\times 3\times 6=71
Starting at the upper left entry, multiply down along the diagonals, and add the resulting products.
6\times 5\times 2+6\times 2=72
Starting at the lower left entry, multiply up along the diagonals, and add the resulting products.
71-72
Subtract the sum of the upward diagonal products from the sum of the downward diagonal products.
-1
Subtract 72 from 71.
det(\left(\begin{matrix}1&0&2\\3&5&2\\6&6&7\end{matrix}\right))
Find the determinant of the matrix using the method of expansion by minors (also known as expansion by cofactors).
det(\left(\begin{matrix}5&2\\6&7\end{matrix}\right))+2det(\left(\begin{matrix}3&5\\6&6\end{matrix}\right))
To expand by minors, multiply each element of the first row by its minor, which is the determinant of the 2\times 2 matrix created by deleting the row and column containing that element, then multiply by the element's position sign.
5\times 7-6\times 2+2\left(3\times 6-6\times 5\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the determinant is ad-bc.
23+2\left(-12\right)
Simplify.
-1
Add the terms to obtain the final result.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}