Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

det(\left(\begin{matrix}-3&-5&-5\\-5&-3&-5\\-5&-5&-3\end{matrix}\right))
Find the determinant of the matrix using the method of diagonals.
\left(\begin{matrix}-3&-5&-5&-3&-5\\-5&-3&-5&-5&-3\\-5&-5&-3&-5&-5\end{matrix}\right)
Extend the original matrix by repeating the first two columns as the fourth and fifth columns.
-3\left(-3\right)\left(-3\right)-5\left(-5\right)\left(-5\right)-5\left(-5\right)\left(-5\right)=-277
Starting at the upper left entry, multiply down along the diagonals, and add the resulting products.
-5\left(-3\right)\left(-5\right)-5\left(-5\right)\left(-3\right)-3\left(-5\right)\left(-5\right)=-225
Starting at the lower left entry, multiply up along the diagonals, and add the resulting products.
-277-\left(-225\right)
Subtract the sum of the upward diagonal products from the sum of the downward diagonal products.
-52
Subtract -225 from -277.
det(\left(\begin{matrix}-3&-5&-5\\-5&-3&-5\\-5&-5&-3\end{matrix}\right))
Find the determinant of the matrix using the method of expansion by minors (also known as expansion by cofactors).
-3det(\left(\begin{matrix}-3&-5\\-5&-3\end{matrix}\right))-\left(-5det(\left(\begin{matrix}-5&-5\\-5&-3\end{matrix}\right))\right)-5det(\left(\begin{matrix}-5&-3\\-5&-5\end{matrix}\right))
To expand by minors, multiply each element of the first row by its minor, which is the determinant of the 2\times 2 matrix created by deleting the row and column containing that element, then multiply by the element's position sign.
-3\left(-3\left(-3\right)-\left(-5\left(-5\right)\right)\right)-\left(-5\left(-5\left(-3\right)-\left(-5\left(-5\right)\right)\right)\right)-5\left(-5\left(-5\right)-\left(-5\left(-3\right)\right)\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the determinant is ad-bc.
-3\left(-16\right)-\left(-5\left(-10\right)\right)-5\times 10
Simplify.
-52
Add the terms to obtain the final result.