Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

det(\left(\begin{matrix}5&4&1\\1&2&3\\2&4&1\end{matrix}\right))
Find the determinant of the matrix using the method of diagonals.
\left(\begin{matrix}5&4&1&5&4\\1&2&3&1&2\\2&4&1&2&4\end{matrix}\right)
Extend the original matrix by repeating the first two columns as the fourth and fifth columns.
5\times 2+4\times 3\times 2+4=38
Starting at the upper left entry, multiply down along the diagonals, and add the resulting products.
2\times 2+4\times 3\times 5+4=68
Starting at the lower left entry, multiply up along the diagonals, and add the resulting products.
38-68
Subtract the sum of the upward diagonal products from the sum of the downward diagonal products.
-30
Subtract 68 from 38.
det(\left(\begin{matrix}5&4&1\\1&2&3\\2&4&1\end{matrix}\right))
Find the determinant of the matrix using the method of expansion by minors (also known as expansion by cofactors).
5det(\left(\begin{matrix}2&3\\4&1\end{matrix}\right))-4det(\left(\begin{matrix}1&3\\2&1\end{matrix}\right))+det(\left(\begin{matrix}1&2\\2&4\end{matrix}\right))
To expand by minors, multiply each element of the first row by its minor, which is the determinant of the 2\times 2 matrix created by deleting the row and column containing that element, then multiply by the element's position sign.
5\left(2-4\times 3\right)-4\left(1-2\times 3\right)+4-2\times 2
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the determinant is ad-bc.
5\left(-10\right)-4\left(-5\right)
Simplify.
-30
Add the terms to obtain the final result.