Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

det(\left(\begin{matrix}5&-2&4\\2&-1&1\\-2&2&-3\end{matrix}\right))
Find the determinant of the matrix using the method of diagonals.
\left(\begin{matrix}5&-2&4&5&-2\\2&-1&1&2&-1\\-2&2&-3&-2&2\end{matrix}\right)
Extend the original matrix by repeating the first two columns as the fourth and fifth columns.
5\left(-1\right)\left(-3\right)-2\left(-2\right)+4\times 2\times 2=35
Starting at the upper left entry, multiply down along the diagonals, and add the resulting products.
-2\left(-1\right)\times 4+2\times 5-3\times 2\left(-2\right)=30
Starting at the lower left entry, multiply up along the diagonals, and add the resulting products.
35-30
Subtract the sum of the upward diagonal products from the sum of the downward diagonal products.
5
Subtract 30 from 35.
det(\left(\begin{matrix}5&-2&4\\2&-1&1\\-2&2&-3\end{matrix}\right))
Find the determinant of the matrix using the method of expansion by minors (also known as expansion by cofactors).
5det(\left(\begin{matrix}-1&1\\2&-3\end{matrix}\right))-\left(-2det(\left(\begin{matrix}2&1\\-2&-3\end{matrix}\right))\right)+4det(\left(\begin{matrix}2&-1\\-2&2\end{matrix}\right))
To expand by minors, multiply each element of the first row by its minor, which is the determinant of the 2\times 2 matrix created by deleting the row and column containing that element, then multiply by the element's position sign.
5\left(-\left(-3\right)-2\right)-\left(-2\left(2\left(-3\right)-\left(-2\right)\right)\right)+4\left(2\times 2-\left(-2\left(-1\right)\right)\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the determinant is ad-bc.
5-\left(-2\left(-4\right)\right)+4\times 2
Simplify.
5
Add the terms to obtain the final result.