Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

det(\left(\begin{matrix}4&20&3\\16&80&6\\28&140&9\end{matrix}\right))
Find the determinant of the matrix using the method of diagonals.
\left(\begin{matrix}4&20&3&4&20\\16&80&6&16&80\\28&140&9&28&140\end{matrix}\right)
Extend the original matrix by repeating the first two columns as the fourth and fifth columns.
4\times 80\times 9+20\times 6\times 28+3\times 16\times 140=12960
Starting at the upper left entry, multiply down along the diagonals, and add the resulting products.
28\times 80\times 3+140\times 6\times 4+9\times 16\times 20=12960
Starting at the lower left entry, multiply up along the diagonals, and add the resulting products.
12960-12960
Subtract the sum of the upward diagonal products from the sum of the downward diagonal products.
0
Subtract 12960 from 12960.
det(\left(\begin{matrix}4&20&3\\16&80&6\\28&140&9\end{matrix}\right))
Find the determinant of the matrix using the method of expansion by minors (also known as expansion by cofactors).
4det(\left(\begin{matrix}80&6\\140&9\end{matrix}\right))-20det(\left(\begin{matrix}16&6\\28&9\end{matrix}\right))+3det(\left(\begin{matrix}16&80\\28&140\end{matrix}\right))
To expand by minors, multiply each element of the first row by its minor, which is the determinant of the 2\times 2 matrix created by deleting the row and column containing that element, then multiply by the element's position sign.
4\left(80\times 9-140\times 6\right)-20\left(16\times 9-28\times 6\right)+3\left(16\times 140-28\times 80\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the determinant is ad-bc.
4\left(-120\right)-20\left(-24\right)
Simplify.
0
Add the terms to obtain the final result.