\left| \begin{array} { c c c } { 3 } & { 2 } & { 6 } \\ { 101 } & { 68 } & { 204 } \\ { 257 } & { 170 } & { 512 } \end{array} \right| =
Evaluate
4
Factor
2^{2}
Share
Copied to clipboard
det(\left(\begin{matrix}3&2&6\\101&68&204\\257&170&512\end{matrix}\right))
Find the determinant of the matrix using the method of diagonals.
\left(\begin{matrix}3&2&6&3&2\\101&68&204&101&68\\257&170&512&257&170\end{matrix}\right)
Extend the original matrix by repeating the first two columns as the fourth and fifth columns.
3\times 68\times 512+2\times 204\times 257+6\times 101\times 170=312324
Starting at the upper left entry, multiply down along the diagonals, and add the resulting products.
257\times 68\times 6+170\times 204\times 3+512\times 101\times 2=312320
Starting at the lower left entry, multiply up along the diagonals, and add the resulting products.
312324-312320
Subtract the sum of the upward diagonal products from the sum of the downward diagonal products.
4
Subtract 312320 from 312324.
det(\left(\begin{matrix}3&2&6\\101&68&204\\257&170&512\end{matrix}\right))
Find the determinant of the matrix using the method of expansion by minors (also known as expansion by cofactors).
3det(\left(\begin{matrix}68&204\\170&512\end{matrix}\right))-2det(\left(\begin{matrix}101&204\\257&512\end{matrix}\right))+6det(\left(\begin{matrix}101&68\\257&170\end{matrix}\right))
To expand by minors, multiply each element of the first row by its minor, which is the determinant of the 2\times 2 matrix created by deleting the row and column containing that element, then multiply by the element's position sign.
3\left(68\times 512-170\times 204\right)-2\left(101\times 512-257\times 204\right)+6\left(101\times 170-257\times 68\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the determinant is ad-bc.
3\times 136-2\left(-716\right)+6\left(-306\right)
Simplify.
4
Add the terms to obtain the final result.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}