Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

det(\left(\begin{matrix}3&1&3\\1&-2&1\\-4&4&-2\end{matrix}\right))
Find the determinant of the matrix using the method of diagonals.
\left(\begin{matrix}3&1&3&3&1\\1&-2&1&1&-2\\-4&4&-2&-4&4\end{matrix}\right)
Extend the original matrix by repeating the first two columns as the fourth and fifth columns.
3\left(-2\right)\left(-2\right)-4+3\times 4=20
Starting at the upper left entry, multiply down along the diagonals, and add the resulting products.
-4\left(-2\right)\times 3+4\times 3-2=34
Starting at the lower left entry, multiply up along the diagonals, and add the resulting products.
20-34
Subtract the sum of the upward diagonal products from the sum of the downward diagonal products.
-14
Subtract 34 from 20.
det(\left(\begin{matrix}3&1&3\\1&-2&1\\-4&4&-2\end{matrix}\right))
Find the determinant of the matrix using the method of expansion by minors (also known as expansion by cofactors).
3det(\left(\begin{matrix}-2&1\\4&-2\end{matrix}\right))-det(\left(\begin{matrix}1&1\\-4&-2\end{matrix}\right))+3det(\left(\begin{matrix}1&-2\\-4&4\end{matrix}\right))
To expand by minors, multiply each element of the first row by its minor, which is the determinant of the 2\times 2 matrix created by deleting the row and column containing that element, then multiply by the element's position sign.
3\left(-2\left(-2\right)-4\right)-\left(-2-\left(-4\right)\right)+3\left(4-\left(-4\left(-2\right)\right)\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the determinant is ad-bc.
-2+3\left(-4\right)
Simplify.
-14
Add the terms to obtain the final result.