Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

det(\left(\begin{matrix}3&-4&0\\3&3&5\\3&5&5\end{matrix}\right))
Find the determinant of the matrix using the method of diagonals.
\left(\begin{matrix}3&-4&0&3&-4\\3&3&5&3&3\\3&5&5&3&5\end{matrix}\right)
Extend the original matrix by repeating the first two columns as the fourth and fifth columns.
3\times 3\times 5-4\times 5\times 3=-15
Starting at the upper left entry, multiply down along the diagonals, and add the resulting products.
5\times 5\times 3+5\times 3\left(-4\right)=15
Starting at the lower left entry, multiply up along the diagonals, and add the resulting products.
-15-15
Subtract the sum of the upward diagonal products from the sum of the downward diagonal products.
-30
Subtract 15 from -15.
det(\left(\begin{matrix}3&-4&0\\3&3&5\\3&5&5\end{matrix}\right))
Find the determinant of the matrix using the method of expansion by minors (also known as expansion by cofactors).
3det(\left(\begin{matrix}3&5\\5&5\end{matrix}\right))-\left(-4det(\left(\begin{matrix}3&5\\3&5\end{matrix}\right))\right)
To expand by minors, multiply each element of the first row by its minor, which is the determinant of the 2\times 2 matrix created by deleting the row and column containing that element, then multiply by the element's position sign.
3\left(3\times 5-5\times 5\right)-\left(-4\left(3\times 5-3\times 5\right)\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the determinant is ad-bc.
3\left(-10\right)
Simplify.
-30
Add the terms to obtain the final result.