Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

det(\left(\begin{matrix}3&-2&1\\5&3&0\\1&1&-2\end{matrix}\right))
Find the determinant of the matrix using the method of diagonals.
\left(\begin{matrix}3&-2&1&3&-2\\5&3&0&5&3\\1&1&-2&1&1\end{matrix}\right)
Extend the original matrix by repeating the first two columns as the fourth and fifth columns.
3\times 3\left(-2\right)+5=-13
Starting at the upper left entry, multiply down along the diagonals, and add the resulting products.
3-2\times 5\left(-2\right)=23
Starting at the lower left entry, multiply up along the diagonals, and add the resulting products.
-13-23
Subtract the sum of the upward diagonal products from the sum of the downward diagonal products.
-36
Subtract 23 from -13.
det(\left(\begin{matrix}3&-2&1\\5&3&0\\1&1&-2\end{matrix}\right))
Find the determinant of the matrix using the method of expansion by minors (also known as expansion by cofactors).
3det(\left(\begin{matrix}3&0\\1&-2\end{matrix}\right))-\left(-2det(\left(\begin{matrix}5&0\\1&-2\end{matrix}\right))\right)+det(\left(\begin{matrix}5&3\\1&1\end{matrix}\right))
To expand by minors, multiply each element of the first row by its minor, which is the determinant of the 2\times 2 matrix created by deleting the row and column containing that element, then multiply by the element's position sign.
3\times 3\left(-2\right)-\left(-2\times 5\left(-2\right)\right)+5-3
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the determinant is ad-bc.
3\left(-6\right)-\left(-2\left(-10\right)\right)+2
Simplify.
-36
Add the terms to obtain the final result.