Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

det(\left(\begin{matrix}3&-1&-2\\0&0&-1\\3&-5&0\end{matrix}\right))
Find the determinant of the matrix using the method of diagonals.
\left(\begin{matrix}3&-1&-2&3&-1\\0&0&-1&0&0\\3&-5&0&3&-5\end{matrix}\right)
Extend the original matrix by repeating the first two columns as the fourth and fifth columns.
-\left(-1\right)\times 3=3
Starting at the upper left entry, multiply down along the diagonals, and add the resulting products.
-5\left(-1\right)\times 3=15
Starting at the lower left entry, multiply up along the diagonals, and add the resulting products.
3-15
Subtract the sum of the upward diagonal products from the sum of the downward diagonal products.
-12
Subtract 15 from 3.
det(\left(\begin{matrix}3&-1&-2\\0&0&-1\\3&-5&0\end{matrix}\right))
Find the determinant of the matrix using the method of expansion by minors (also known as expansion by cofactors).
3det(\left(\begin{matrix}0&-1\\-5&0\end{matrix}\right))-\left(-det(\left(\begin{matrix}0&-1\\3&0\end{matrix}\right))\right)-2det(\left(\begin{matrix}0&0\\3&-5\end{matrix}\right))
To expand by minors, multiply each element of the first row by its minor, which is the determinant of the 2\times 2 matrix created by deleting the row and column containing that element, then multiply by the element's position sign.
3\left(-\left(-5\left(-1\right)\right)\right)-\left(-\left(-3\left(-1\right)\right)\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the determinant is ad-bc.
3\left(-5\right)-\left(-3\right)
Simplify.
-12
Add the terms to obtain the final result.