\left| \begin{array} { c c c } { 2 - 99 } & { 6 } & { - 24 } \\ { 6 } & { 2 - 130 } & { 30 } \\ { 24 } & { 30 } & { 2 - 71 } \end{array} \right| =
Evaluate
-840648
Factor
-840648
Share
Copied to clipboard
det(\left(\begin{matrix}-97&6&-24\\6&2-130&30\\24&30&2-71\end{matrix}\right))
Subtract 99 from 2 to get -97.
det(\left(\begin{matrix}-97&6&-24\\6&-128&30\\24&30&2-71\end{matrix}\right))
Subtract 130 from 2 to get -128.
det(\left(\begin{matrix}-97&6&-24\\6&-128&30\\24&30&-69\end{matrix}\right))
Subtract 71 from 2 to get -69.
\left(\begin{matrix}-97&6&-24&-97&6\\6&-128&30&6&-128\\24&30&-69&24&30\end{matrix}\right)
Extend the original matrix by repeating the first two columns as the fourth and fifth columns.
-97\left(-128\right)\left(-69\right)+6\times 30\times 24-24\times 6\times 30=-856704
Starting at the upper left entry, multiply down along the diagonals, and add the resulting products.
24\left(-128\right)\left(-24\right)+30\times 30\left(-97\right)-69\times 6\times 6=-16056
Starting at the lower left entry, multiply up along the diagonals, and add the resulting products.
-856704-\left(-16056\right)
Subtract the sum of the upward diagonal products from the sum of the downward diagonal products.
-840648
Subtract -16056 from -856704.
det(\left(\begin{matrix}-97&6&-24\\6&2-130&30\\24&30&2-71\end{matrix}\right))
Subtract 99 from 2 to get -97.
det(\left(\begin{matrix}-97&6&-24\\6&-128&30\\24&30&2-71\end{matrix}\right))
Subtract 130 from 2 to get -128.
det(\left(\begin{matrix}-97&6&-24\\6&-128&30\\24&30&-69\end{matrix}\right))
Subtract 71 from 2 to get -69.
-97det(\left(\begin{matrix}-128&30\\30&-69\end{matrix}\right))-6det(\left(\begin{matrix}6&30\\24&-69\end{matrix}\right))-24det(\left(\begin{matrix}6&-128\\24&30\end{matrix}\right))
To expand by minors, multiply each element of the first row by its minor, which is the determinant of the 2\times 2 matrix created by deleting the row and column containing that element, then multiply by the element's position sign.
-97\left(-128\left(-69\right)-30\times 30\right)-6\left(6\left(-69\right)-24\times 30\right)-24\left(6\times 30-24\left(-128\right)\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the determinant is ad-bc.
-97\times 7932-6\left(-1134\right)-24\times 3252
Simplify.
-840648
Add the terms to obtain the final result.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}