Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

det(\left(\begin{matrix}2&-4&1\\1&-5&3\\1&-1&1\end{matrix}\right))
Find the determinant of the matrix using the method of diagonals.
\left(\begin{matrix}2&-4&1&2&-4\\1&-5&3&1&-5\\1&-1&1&1&-1\end{matrix}\right)
Extend the original matrix by repeating the first two columns as the fourth and fifth columns.
2\left(-5\right)-4\times 3-1=-23
Starting at the upper left entry, multiply down along the diagonals, and add the resulting products.
-5-3\times 2-4=-15
Starting at the lower left entry, multiply up along the diagonals, and add the resulting products.
-23-\left(-15\right)
Subtract the sum of the upward diagonal products from the sum of the downward diagonal products.
-8
Subtract -15 from -23.
det(\left(\begin{matrix}2&-4&1\\1&-5&3\\1&-1&1\end{matrix}\right))
Find the determinant of the matrix using the method of expansion by minors (also known as expansion by cofactors).
2det(\left(\begin{matrix}-5&3\\-1&1\end{matrix}\right))-\left(-4det(\left(\begin{matrix}1&3\\1&1\end{matrix}\right))\right)+det(\left(\begin{matrix}1&-5\\1&-1\end{matrix}\right))
To expand by minors, multiply each element of the first row by its minor, which is the determinant of the 2\times 2 matrix created by deleting the row and column containing that element, then multiply by the element's position sign.
2\left(-5-\left(-3\right)\right)-\left(-4\left(1-3\right)\right)+-1-\left(-5\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the determinant is ad-bc.
2\left(-2\right)-\left(-4\left(-2\right)\right)+4
Simplify.
-8
Add the terms to obtain the final result.