Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

det(\left(\begin{matrix}1&6&-3\\2&7&5\\1&1&8\end{matrix}\right))
Find the determinant of the matrix using the method of diagonals.
\left(\begin{matrix}1&6&-3&1&6\\2&7&5&2&7\\1&1&8&1&1\end{matrix}\right)
Extend the original matrix by repeating the first two columns as the fourth and fifth columns.
7\times 8+6\times 5-3\times 2=80
Starting at the upper left entry, multiply down along the diagonals, and add the resulting products.
7\left(-3\right)+5+8\times 2\times 6=80
Starting at the lower left entry, multiply up along the diagonals, and add the resulting products.
80-80
Subtract the sum of the upward diagonal products from the sum of the downward diagonal products.
0
Subtract 80 from 80.
det(\left(\begin{matrix}1&6&-3\\2&7&5\\1&1&8\end{matrix}\right))
Find the determinant of the matrix using the method of expansion by minors (also known as expansion by cofactors).
det(\left(\begin{matrix}7&5\\1&8\end{matrix}\right))-6det(\left(\begin{matrix}2&5\\1&8\end{matrix}\right))-3det(\left(\begin{matrix}2&7\\1&1\end{matrix}\right))
To expand by minors, multiply each element of the first row by its minor, which is the determinant of the 2\times 2 matrix created by deleting the row and column containing that element, then multiply by the element's position sign.
7\times 8-5-6\left(2\times 8-5\right)-3\left(2-7\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the determinant is ad-bc.
51-6\times 11-3\left(-5\right)
Simplify.
0
Add the terms to obtain the final result.