Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

det(\left(\begin{matrix}1&2&2\\6&4&-4\\-2&\frac{1}{2}&5\end{matrix}\right))
Find the determinant of the matrix using the method of diagonals.
\left(\begin{matrix}1&2&2&1&2\\6&4&-4&6&4\\-2&\frac{1}{2}&5&-2&\frac{1}{2}\end{matrix}\right)
Extend the original matrix by repeating the first two columns as the fourth and fifth columns.
4\times 5+2\left(-4\right)\left(-2\right)+2\times 6\times \frac{1}{2}=42
Starting at the upper left entry, multiply down along the diagonals, and add the resulting products.
-2\times 4\times 2+\frac{1}{2}\left(-4\right)+5\times 6\times 2=42
Starting at the lower left entry, multiply up along the diagonals, and add the resulting products.
42-42
Subtract the sum of the upward diagonal products from the sum of the downward diagonal products.
0
Subtract 42 from 42.
det(\left(\begin{matrix}1&2&2\\6&4&-4\\-2&\frac{1}{2}&5\end{matrix}\right))
Find the determinant of the matrix using the method of expansion by minors (also known as expansion by cofactors).
det(\left(\begin{matrix}4&-4\\\frac{1}{2}&5\end{matrix}\right))-2det(\left(\begin{matrix}6&-4\\-2&5\end{matrix}\right))+2det(\left(\begin{matrix}6&4\\-2&\frac{1}{2}\end{matrix}\right))
To expand by minors, multiply each element of the first row by its minor, which is the determinant of the 2\times 2 matrix created by deleting the row and column containing that element, then multiply by the element's position sign.
4\times 5-\frac{1}{2}\left(-4\right)-2\left(6\times 5-\left(-2\left(-4\right)\right)\right)+2\left(6\times \frac{1}{2}-\left(-2\times 4\right)\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the determinant is ad-bc.
22-2\times 22+2\times 11
Simplify.
0
Add the terms to obtain the final result.