\left| \begin{array} { c c c } { 1 ^ { 2 } } & { 3 ^ { 2 } } & { 5 ^ { 2 } } \\ { 2 ^ { 2 } } & { 5 ^ { 2 } } & { 15 ^ { 2 } } \\ { 3 ^ { 2 } } & { 8 } & { 17 ^ { 2 } } \end{array} \right|
Evaluate
8421
Factor
3\times 7\times 401
Share
Copied to clipboard
det(\left(\begin{matrix}1&3^{2}&5^{2}\\2^{2}&5^{2}&15^{2}\\3^{2}&8&17^{2}\end{matrix}\right))
Calculate 1 to the power of 2 and get 1.
det(\left(\begin{matrix}1&9&5^{2}\\2^{2}&5^{2}&15^{2}\\3^{2}&8&17^{2}\end{matrix}\right))
Calculate 3 to the power of 2 and get 9.
det(\left(\begin{matrix}1&9&25\\2^{2}&5^{2}&15^{2}\\3^{2}&8&17^{2}\end{matrix}\right))
Calculate 5 to the power of 2 and get 25.
det(\left(\begin{matrix}1&9&25\\4&5^{2}&15^{2}\\3^{2}&8&17^{2}\end{matrix}\right))
Calculate 2 to the power of 2 and get 4.
det(\left(\begin{matrix}1&9&25\\4&25&15^{2}\\3^{2}&8&17^{2}\end{matrix}\right))
Calculate 5 to the power of 2 and get 25.
det(\left(\begin{matrix}1&9&25\\4&25&225\\3^{2}&8&17^{2}\end{matrix}\right))
Calculate 15 to the power of 2 and get 225.
det(\left(\begin{matrix}1&9&25\\4&25&225\\9&8&17^{2}\end{matrix}\right))
Calculate 3 to the power of 2 and get 9.
det(\left(\begin{matrix}1&9&25\\4&25&225\\9&8&289\end{matrix}\right))
Calculate 17 to the power of 2 and get 289.
\left(\begin{matrix}1&9&25&1&9\\4&25&225&4&25\\9&8&289&9&8\end{matrix}\right)
Extend the original matrix by repeating the first two columns as the fourth and fifth columns.
25\times 289+9\times 225\times 9+25\times 4\times 8=26250
Starting at the upper left entry, multiply down along the diagonals, and add the resulting products.
9\times 25\times 25+8\times 225+289\times 4\times 9=17829
Starting at the lower left entry, multiply up along the diagonals, and add the resulting products.
26250-17829
Subtract the sum of the upward diagonal products from the sum of the downward diagonal products.
8421
Subtract 17829 from 26250.
det(\left(\begin{matrix}1&3^{2}&5^{2}\\2^{2}&5^{2}&15^{2}\\3^{2}&8&17^{2}\end{matrix}\right))
Calculate 1 to the power of 2 and get 1.
det(\left(\begin{matrix}1&9&5^{2}\\2^{2}&5^{2}&15^{2}\\3^{2}&8&17^{2}\end{matrix}\right))
Calculate 3 to the power of 2 and get 9.
det(\left(\begin{matrix}1&9&25\\2^{2}&5^{2}&15^{2}\\3^{2}&8&17^{2}\end{matrix}\right))
Calculate 5 to the power of 2 and get 25.
det(\left(\begin{matrix}1&9&25\\4&5^{2}&15^{2}\\3^{2}&8&17^{2}\end{matrix}\right))
Calculate 2 to the power of 2 and get 4.
det(\left(\begin{matrix}1&9&25\\4&25&15^{2}\\3^{2}&8&17^{2}\end{matrix}\right))
Calculate 5 to the power of 2 and get 25.
det(\left(\begin{matrix}1&9&25\\4&25&225\\3^{2}&8&17^{2}\end{matrix}\right))
Calculate 15 to the power of 2 and get 225.
det(\left(\begin{matrix}1&9&25\\4&25&225\\9&8&17^{2}\end{matrix}\right))
Calculate 3 to the power of 2 and get 9.
det(\left(\begin{matrix}1&9&25\\4&25&225\\9&8&289\end{matrix}\right))
Calculate 17 to the power of 2 and get 289.
det(\left(\begin{matrix}25&225\\8&289\end{matrix}\right))-9det(\left(\begin{matrix}4&225\\9&289\end{matrix}\right))+25det(\left(\begin{matrix}4&25\\9&8\end{matrix}\right))
To expand by minors, multiply each element of the first row by its minor, which is the determinant of the 2\times 2 matrix created by deleting the row and column containing that element, then multiply by the element's position sign.
25\times 289-8\times 225-9\left(4\times 289-9\times 225\right)+25\left(4\times 8-9\times 25\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the determinant is ad-bc.
5425-9\left(-869\right)+25\left(-193\right)
Simplify.
8421
Add the terms to obtain the final result.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}