Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

det(\left(\begin{matrix}1&2!&3!\\2!&3!&4!\\3!&4!&5!\end{matrix}\right))
The factorial of 1 is 1.
det(\left(\begin{matrix}1&2&3!\\2!&3!&4!\\3!&4!&5!\end{matrix}\right))
The factorial of 2 is 2.
det(\left(\begin{matrix}1&2&6\\2!&3!&4!\\3!&4!&5!\end{matrix}\right))
The factorial of 3 is 6.
det(\left(\begin{matrix}1&2&6\\2&3!&4!\\3!&4!&5!\end{matrix}\right))
The factorial of 2 is 2.
det(\left(\begin{matrix}1&2&6\\2&6&4!\\3!&4!&5!\end{matrix}\right))
The factorial of 3 is 6.
det(\left(\begin{matrix}1&2&6\\2&6&24\\3!&4!&5!\end{matrix}\right))
The factorial of 4 is 24.
det(\left(\begin{matrix}1&2&6\\2&6&24\\6&4!&5!\end{matrix}\right))
The factorial of 3 is 6.
det(\left(\begin{matrix}1&2&6\\2&6&24\\6&24&5!\end{matrix}\right))
The factorial of 4 is 24.
det(\left(\begin{matrix}1&2&6\\2&6&24\\6&24&120\end{matrix}\right))
The factorial of 5 is 120.
\left(\begin{matrix}1&2&6&1&2\\2&6&24&2&6\\6&24&120&6&24\end{matrix}\right)
Extend the original matrix by repeating the first two columns as the fourth and fifth columns.
6\times 120+2\times 24\times 6+6\times 2\times 24=1296
Starting at the upper left entry, multiply down along the diagonals, and add the resulting products.
6\times 6\times 6+24\times 24+120\times 2\times 2=1272
Starting at the lower left entry, multiply up along the diagonals, and add the resulting products.
1296-1272
Subtract the sum of the upward diagonal products from the sum of the downward diagonal products.
24
Subtract 1272 from 1296.
det(\left(\begin{matrix}1&2!&3!\\2!&3!&4!\\3!&4!&5!\end{matrix}\right))
The factorial of 1 is 1.
det(\left(\begin{matrix}1&2&3!\\2!&3!&4!\\3!&4!&5!\end{matrix}\right))
The factorial of 2 is 2.
det(\left(\begin{matrix}1&2&6\\2!&3!&4!\\3!&4!&5!\end{matrix}\right))
The factorial of 3 is 6.
det(\left(\begin{matrix}1&2&6\\2&3!&4!\\3!&4!&5!\end{matrix}\right))
The factorial of 2 is 2.
det(\left(\begin{matrix}1&2&6\\2&6&4!\\3!&4!&5!\end{matrix}\right))
The factorial of 3 is 6.
det(\left(\begin{matrix}1&2&6\\2&6&24\\3!&4!&5!\end{matrix}\right))
The factorial of 4 is 24.
det(\left(\begin{matrix}1&2&6\\2&6&24\\6&4!&5!\end{matrix}\right))
The factorial of 3 is 6.
det(\left(\begin{matrix}1&2&6\\2&6&24\\6&24&5!\end{matrix}\right))
The factorial of 4 is 24.
det(\left(\begin{matrix}1&2&6\\2&6&24\\6&24&120\end{matrix}\right))
The factorial of 5 is 120.
det(\left(\begin{matrix}6&24\\24&120\end{matrix}\right))-2det(\left(\begin{matrix}2&24\\6&120\end{matrix}\right))+6det(\left(\begin{matrix}2&6\\6&24\end{matrix}\right))
To expand by minors, multiply each element of the first row by its minor, which is the determinant of the 2\times 2 matrix created by deleting the row and column containing that element, then multiply by the element's position sign.
6\times 120-24\times 24-2\left(2\times 120-6\times 24\right)+6\left(2\times 24-6\times 6\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the determinant is ad-bc.
144-2\times 96+6\times 12
Simplify.
24
Add the terms to obtain the final result.