Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

det(\left(\begin{matrix}-2&3&1\\1&1&1\\3&-1&5\end{matrix}\right))
Find the determinant of the matrix using the method of diagonals.
\left(\begin{matrix}-2&3&1&-2&3\\1&1&1&1&1\\3&-1&5&3&-1\end{matrix}\right)
Extend the original matrix by repeating the first two columns as the fourth and fifth columns.
-2\times 5+3\times 3-1=-2
Starting at the upper left entry, multiply down along the diagonals, and add the resulting products.
3-\left(-2\right)+5\times 3=20
Starting at the lower left entry, multiply up along the diagonals, and add the resulting products.
-2-20
Subtract the sum of the upward diagonal products from the sum of the downward diagonal products.
-22
Subtract 20 from -2.
det(\left(\begin{matrix}-2&3&1\\1&1&1\\3&-1&5\end{matrix}\right))
Find the determinant of the matrix using the method of expansion by minors (also known as expansion by cofactors).
-2det(\left(\begin{matrix}1&1\\-1&5\end{matrix}\right))-3det(\left(\begin{matrix}1&1\\3&5\end{matrix}\right))+det(\left(\begin{matrix}1&1\\3&-1\end{matrix}\right))
To expand by minors, multiply each element of the first row by its minor, which is the determinant of the 2\times 2 matrix created by deleting the row and column containing that element, then multiply by the element's position sign.
-2\left(5-\left(-1\right)\right)-3\left(5-3\right)-1-3
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the determinant is ad-bc.
-2\times 6-3\times 2-4
Simplify.
-22
Add the terms to obtain the final result.