Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

det(\left(\begin{matrix}-2&-1&2\\-9&2&-\frac{11}{2}\\10&-5&\frac{13}{2}\end{matrix}\right))
Find the determinant of the matrix using the method of diagonals.
\left(\begin{matrix}-2&-1&2&-2&-1\\-9&2&-\frac{11}{2}&-9&2\\10&-5&\frac{13}{2}&10&-5\end{matrix}\right)
Extend the original matrix by repeating the first two columns as the fourth and fifth columns.
-2\times 2\times \frac{13}{2}-\left(-\frac{11}{2}\times 10\right)+2\left(-9\right)\left(-5\right)=119
Starting at the upper left entry, multiply down along the diagonals, and add the resulting products.
10\times 2\times 2-5\left(-\frac{11}{2}\right)\left(-2\right)+\frac{13}{2}\left(-9\right)\left(-1\right)=\frac{87}{2}
Starting at the lower left entry, multiply up along the diagonals, and add the resulting products.
119-\frac{87}{2}
Subtract the sum of the upward diagonal products from the sum of the downward diagonal products.
\frac{151}{2}
Subtract \frac{87}{2} from 119.
det(\left(\begin{matrix}-2&-1&2\\-9&2&-\frac{11}{2}\\10&-5&\frac{13}{2}\end{matrix}\right))
Find the determinant of the matrix using the method of expansion by minors (also known as expansion by cofactors).
-2det(\left(\begin{matrix}2&-\frac{11}{2}\\-5&\frac{13}{2}\end{matrix}\right))-\left(-det(\left(\begin{matrix}-9&-\frac{11}{2}\\10&\frac{13}{2}\end{matrix}\right))\right)+2det(\left(\begin{matrix}-9&2\\10&-5\end{matrix}\right))
To expand by minors, multiply each element of the first row by its minor, which is the determinant of the 2\times 2 matrix created by deleting the row and column containing that element, then multiply by the element's position sign.
-2\left(2\times \frac{13}{2}-\left(-5\left(-\frac{11}{2}\right)\right)\right)-\left(-\left(-9\times \frac{13}{2}-10\left(-\frac{11}{2}\right)\right)\right)+2\left(-9\left(-5\right)-10\times 2\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the determinant is ad-bc.
-2\left(-\frac{29}{2}\right)-\left(-\left(-\frac{7}{2}\right)\right)+2\times 25
Simplify.
\frac{151}{2}
Add the terms to obtain the final result.