\left| \begin{array} { c c c } { - 2 } & { - 1 } & { 2 } \\ { - 9 } & { 2 } & { - \frac { 11 } { 2 } } \\ { 10 } & { - 5 } & { \frac { 13 } { 2 } } \end{array} \right|
Evaluate
\frac{151}{2}=75.5
Factor
\frac{151}{2} = 75\frac{1}{2} = 75.5
Share
Copied to clipboard
det(\left(\begin{matrix}-2&-1&2\\-9&2&-\frac{11}{2}\\10&-5&\frac{13}{2}\end{matrix}\right))
Find the determinant of the matrix using the method of diagonals.
\left(\begin{matrix}-2&-1&2&-2&-1\\-9&2&-\frac{11}{2}&-9&2\\10&-5&\frac{13}{2}&10&-5\end{matrix}\right)
Extend the original matrix by repeating the first two columns as the fourth and fifth columns.
-2\times 2\times \frac{13}{2}-\left(-\frac{11}{2}\times 10\right)+2\left(-9\right)\left(-5\right)=119
Starting at the upper left entry, multiply down along the diagonals, and add the resulting products.
10\times 2\times 2-5\left(-\frac{11}{2}\right)\left(-2\right)+\frac{13}{2}\left(-9\right)\left(-1\right)=\frac{87}{2}
Starting at the lower left entry, multiply up along the diagonals, and add the resulting products.
119-\frac{87}{2}
Subtract the sum of the upward diagonal products from the sum of the downward diagonal products.
\frac{151}{2}
Subtract \frac{87}{2} from 119.
det(\left(\begin{matrix}-2&-1&2\\-9&2&-\frac{11}{2}\\10&-5&\frac{13}{2}\end{matrix}\right))
Find the determinant of the matrix using the method of expansion by minors (also known as expansion by cofactors).
-2det(\left(\begin{matrix}2&-\frac{11}{2}\\-5&\frac{13}{2}\end{matrix}\right))-\left(-det(\left(\begin{matrix}-9&-\frac{11}{2}\\10&\frac{13}{2}\end{matrix}\right))\right)+2det(\left(\begin{matrix}-9&2\\10&-5\end{matrix}\right))
To expand by minors, multiply each element of the first row by its minor, which is the determinant of the 2\times 2 matrix created by deleting the row and column containing that element, then multiply by the element's position sign.
-2\left(2\times \frac{13}{2}-\left(-5\left(-\frac{11}{2}\right)\right)\right)-\left(-\left(-9\times \frac{13}{2}-10\left(-\frac{11}{2}\right)\right)\right)+2\left(-9\left(-5\right)-10\times 2\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the determinant is ad-bc.
-2\left(-\frac{29}{2}\right)-\left(-\left(-\frac{7}{2}\right)\right)+2\times 25
Simplify.
\frac{151}{2}
Add the terms to obtain the final result.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}