Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

det(\left(\begin{matrix}-14&-2&-4\\-6&-8&-12\\-16&-10&-18\end{matrix}\right))
Find the determinant of the matrix using the method of diagonals.
\left(\begin{matrix}-14&-2&-4&-14&-2\\-6&-8&-12&-6&-8\\-16&-10&-18&-16&-10\end{matrix}\right)
Extend the original matrix by repeating the first two columns as the fourth and fifth columns.
-14\left(-8\right)\left(-18\right)-2\left(-12\right)\left(-16\right)-4\left(-6\right)\left(-10\right)=-2640
Starting at the upper left entry, multiply down along the diagonals, and add the resulting products.
-16\left(-8\right)\left(-4\right)-10\left(-12\right)\left(-14\right)-18\left(-6\right)\left(-2\right)=-2408
Starting at the lower left entry, multiply up along the diagonals, and add the resulting products.
-2640-\left(-2408\right)
Subtract the sum of the upward diagonal products from the sum of the downward diagonal products.
-232
Subtract -2408 from -2640.
det(\left(\begin{matrix}-14&-2&-4\\-6&-8&-12\\-16&-10&-18\end{matrix}\right))
Find the determinant of the matrix using the method of expansion by minors (also known as expansion by cofactors).
-14det(\left(\begin{matrix}-8&-12\\-10&-18\end{matrix}\right))-\left(-2det(\left(\begin{matrix}-6&-12\\-16&-18\end{matrix}\right))\right)-4det(\left(\begin{matrix}-6&-8\\-16&-10\end{matrix}\right))
To expand by minors, multiply each element of the first row by its minor, which is the determinant of the 2\times 2 matrix created by deleting the row and column containing that element, then multiply by the element's position sign.
-14\left(-8\left(-18\right)-\left(-10\left(-12\right)\right)\right)-\left(-2\left(-6\left(-18\right)-\left(-16\left(-12\right)\right)\right)\right)-4\left(-6\left(-10\right)-\left(-16\left(-8\right)\right)\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the determinant is ad-bc.
-14\times 24-\left(-2\left(-84\right)\right)-4\left(-68\right)
Simplify.
-232
Add the terms to obtain the final result.