Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

det(\left(\begin{matrix}-1&1&1\\1&4&1\\1&1&5\end{matrix}\right))
Find the determinant of the matrix using the method of diagonals.
\left(\begin{matrix}-1&1&1&-1&1\\1&4&1&1&4\\1&1&5&1&1\end{matrix}\right)
Extend the original matrix by repeating the first two columns as the fourth and fifth columns.
-4\times 5+1+1=-18
Starting at the upper left entry, multiply down along the diagonals, and add the resulting products.
4-1+5=8
Starting at the lower left entry, multiply up along the diagonals, and add the resulting products.
-18-8
Subtract the sum of the upward diagonal products from the sum of the downward diagonal products.
-26
Subtract 8 from -18.
det(\left(\begin{matrix}-1&1&1\\1&4&1\\1&1&5\end{matrix}\right))
Find the determinant of the matrix using the method of expansion by minors (also known as expansion by cofactors).
-det(\left(\begin{matrix}4&1\\1&5\end{matrix}\right))-det(\left(\begin{matrix}1&1\\1&5\end{matrix}\right))+det(\left(\begin{matrix}1&4\\1&1\end{matrix}\right))
To expand by minors, multiply each element of the first row by its minor, which is the determinant of the 2\times 2 matrix created by deleting the row and column containing that element, then multiply by the element's position sign.
-\left(4\times 5-1\right)-\left(5-1\right)+1-4
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the determinant is ad-bc.
-19-4-3
Simplify.
-26
Add the terms to obtain the final result.