Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

det(\left(\begin{matrix}-1&1&-3\\2&0&1\\3&2&4\end{matrix}\right))
Find the determinant of the matrix using the method of diagonals.
\left(\begin{matrix}-1&1&-3&-1&1\\2&0&1&2&0\\3&2&4&3&2\end{matrix}\right)
Extend the original matrix by repeating the first two columns as the fourth and fifth columns.
3-3\times 2\times 2=-9
Starting at the upper left entry, multiply down along the diagonals, and add the resulting products.
2\left(-1\right)+4\times 2=6
Starting at the lower left entry, multiply up along the diagonals, and add the resulting products.
-9-6
Subtract the sum of the upward diagonal products from the sum of the downward diagonal products.
-15
Subtract 6 from -9.
det(\left(\begin{matrix}-1&1&-3\\2&0&1\\3&2&4\end{matrix}\right))
Find the determinant of the matrix using the method of expansion by minors (also known as expansion by cofactors).
-det(\left(\begin{matrix}0&1\\2&4\end{matrix}\right))-det(\left(\begin{matrix}2&1\\3&4\end{matrix}\right))-3det(\left(\begin{matrix}2&0\\3&2\end{matrix}\right))
To expand by minors, multiply each element of the first row by its minor, which is the determinant of the 2\times 2 matrix created by deleting the row and column containing that element, then multiply by the element's position sign.
-\left(-2\right)-\left(2\times 4-3\right)-3\times 2\times 2
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the determinant is ad-bc.
-\left(-2\right)-5-3\times 4
Simplify.
-15
Add the terms to obtain the final result.