Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

det(\left(\begin{matrix}-1&-2&-3\\-2&-3&-5\\-3&-4&-7\end{matrix}\right))
Find the determinant of the matrix using the method of diagonals.
\left(\begin{matrix}-1&-2&-3&-1&-2\\-2&-3&-5&-2&-3\\-3&-4&-7&-3&-4\end{matrix}\right)
Extend the original matrix by repeating the first two columns as the fourth and fifth columns.
-\left(-3\right)\left(-7\right)-2\left(-5\right)\left(-3\right)-3\left(-2\right)\left(-4\right)=-75
Starting at the upper left entry, multiply down along the diagonals, and add the resulting products.
-3\left(-3\right)\left(-3\right)-4\left(-5\right)\left(-1\right)-7\left(-2\right)\left(-2\right)=-75
Starting at the lower left entry, multiply up along the diagonals, and add the resulting products.
-75-\left(-75\right)
Subtract the sum of the upward diagonal products from the sum of the downward diagonal products.
0
Subtract -75 from -75.
det(\left(\begin{matrix}-1&-2&-3\\-2&-3&-5\\-3&-4&-7\end{matrix}\right))
Find the determinant of the matrix using the method of expansion by minors (also known as expansion by cofactors).
-det(\left(\begin{matrix}-3&-5\\-4&-7\end{matrix}\right))-\left(-2det(\left(\begin{matrix}-2&-5\\-3&-7\end{matrix}\right))\right)-3det(\left(\begin{matrix}-2&-3\\-3&-4\end{matrix}\right))
To expand by minors, multiply each element of the first row by its minor, which is the determinant of the 2\times 2 matrix created by deleting the row and column containing that element, then multiply by the element's position sign.
-\left(-3\left(-7\right)-\left(-4\left(-5\right)\right)\right)-\left(-2\left(-2\left(-7\right)-\left(-3\left(-5\right)\right)\right)\right)-3\left(-2\left(-4\right)-\left(-3\left(-3\right)\right)\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the determinant is ad-bc.
-1-\left(-2\left(-1\right)\right)-3\left(-1\right)
Simplify.
0
Add the terms to obtain the final result.