\left| \begin{array} { c c c } { \frac { 9 } { 2 } } & { \frac { 7 } { 8 } } & { \frac { 17 } { 3 } } \\ { \frac { 28 } { 3 } } & { \frac { 37 } { 9 } } & { \frac { 9 } { 8 } } \\ { \frac { 1 } { 13 } } & { \frac { 8 } { 9 } } & { \frac { 2 } { 7 } } \end{array} \right|
Evaluate
\frac{20638057}{471744}\approx 43.748424993
Factor
\frac{11 \cdot 1876187}{2 ^ {6} \cdot 3 ^ {4} \cdot 7 \cdot 13} = 43\frac{353065}{471744} = 43.74842499321666
Share
Copied to clipboard
det(\left(\begin{matrix}\frac{9}{2}&\frac{7}{8}&\frac{17}{3}\\\frac{28}{3}&\frac{37}{9}&\frac{9}{8}\\\frac{1}{13}&\frac{8}{9}&\frac{2}{7}\end{matrix}\right))
Find the determinant of the matrix using the method of diagonals.
\left(\begin{matrix}\frac{9}{2}&\frac{7}{8}&\frac{17}{3}&\frac{9}{2}&\frac{7}{8}\\\frac{28}{3}&\frac{37}{9}&\frac{9}{8}&\frac{28}{3}&\frac{37}{9}\\\frac{1}{13}&\frac{8}{9}&\frac{2}{7}&\frac{1}{13}&\frac{8}{9}\end{matrix}\right)
Extend the original matrix by repeating the first two columns as the fourth and fifth columns.
\frac{9}{2}\times \frac{37}{9}\times \frac{2}{7}+\frac{7}{8}\times \frac{9}{8}\times \frac{1}{13}+\frac{17}{3}\times \frac{28}{3}\times \frac{8}{9}=\frac{24707017}{471744}
Starting at the upper left entry, multiply down along the diagonals, and add the resulting products.
\frac{1}{13}\times \frac{37}{9}\times \frac{17}{3}+\frac{8}{9}\times \frac{9}{8}\times \frac{9}{2}+\frac{2}{7}\times \frac{28}{3}\times \frac{7}{8}=\frac{6055}{702}
Starting at the lower left entry, multiply up along the diagonals, and add the resulting products.
\frac{24707017}{471744}-\frac{6055}{702}
Subtract the sum of the upward diagonal products from the sum of the downward diagonal products.
\frac{20638057}{471744}
Subtract \frac{6055}{702} from \frac{24707017}{471744} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
det(\left(\begin{matrix}\frac{9}{2}&\frac{7}{8}&\frac{17}{3}\\\frac{28}{3}&\frac{37}{9}&\frac{9}{8}\\\frac{1}{13}&\frac{8}{9}&\frac{2}{7}\end{matrix}\right))
Find the determinant of the matrix using the method of expansion by minors (also known as expansion by cofactors).
\frac{9}{2}det(\left(\begin{matrix}\frac{37}{9}&\frac{9}{8}\\\frac{8}{9}&\frac{2}{7}\end{matrix}\right))-\frac{7}{8}det(\left(\begin{matrix}\frac{28}{3}&\frac{9}{8}\\\frac{1}{13}&\frac{2}{7}\end{matrix}\right))+\frac{17}{3}det(\left(\begin{matrix}\frac{28}{3}&\frac{37}{9}\\\frac{1}{13}&\frac{8}{9}\end{matrix}\right))
To expand by minors, multiply each element of the first row by its minor, which is the determinant of the 2\times 2 matrix created by deleting the row and column containing that element, then multiply by the element's position sign.
\frac{9}{2}\left(\frac{37}{9}\times \frac{2}{7}-\frac{8}{9}\times \frac{9}{8}\right)-\frac{7}{8}\left(\frac{28}{3}\times \frac{2}{7}-\frac{1}{13}\times \frac{9}{8}\right)+\frac{17}{3}\left(\frac{28}{3}\times \frac{8}{9}-\frac{1}{13}\times \frac{37}{9}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the determinant is ad-bc.
\frac{9}{2}\times \frac{11}{63}-\frac{7}{8}\times \frac{805}{312}+\frac{17}{3}\times \frac{2801}{351}
Simplify.
\frac{20638057}{471744}
Add the terms to obtain the final result.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}