Solve for x
x=-3
x = -\frac{5}{3} = -1\frac{2}{3} \approx -1.666666667
Graph
Share
Copied to clipboard
|\frac{3x+7}{4}|=\frac{1}{2}
Combine 5x and -2x to get 3x.
|\frac{3}{4}x+\frac{7}{4}|=\frac{1}{2}
Divide each term of 3x+7 by 4 to get \frac{3}{4}x+\frac{7}{4}.
\frac{3}{4}x+\frac{7}{4}=\frac{1}{2} \frac{3}{4}x+\frac{7}{4}=-\frac{1}{2}
Use the definition of absolute value.
\frac{3}{4}x=-\frac{5}{4} \frac{3}{4}x=-\frac{9}{4}
Subtract \frac{7}{4} from both sides of the equation.
x=-\frac{5}{3} x=-3
Divide both sides of the equation by \frac{3}{4}, which is the same as multiplying both sides by the reciprocal of the fraction.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}