\left\{ \begin{array}{l}{ z = - 2 }\\{ - 3 y + 4 z = 4 }\\{ - x + 2 y - 3 z = - 7 }\end{array} \right.
Solve for z, y, x
x=5
y=-4
z=-2
Share
Copied to clipboard
-3y+4\left(-2\right)=4
Consider the second equation. Insert the known values of variables into the equation.
-3y-8=4
Multiply 4 and -2 to get -8.
-3y=4+8
Add 8 to both sides.
-3y=12
Add 4 and 8 to get 12.
y=\frac{12}{-3}
Divide both sides by -3.
y=-4
Divide 12 by -3 to get -4.
-x+2\left(-4\right)-3\left(-2\right)=-7
Consider the third equation. Insert the known values of variables into the equation.
-x-8+6=-7
Do the multiplications.
-x-2=-7
Add -8 and 6 to get -2.
-x=-7+2
Add 2 to both sides.
-x=-5
Add -7 and 2 to get -5.
x=\frac{-5}{-1}
Divide both sides by -1.
x=5
Fraction \frac{-5}{-1} can be simplified to 5 by removing the negative sign from both the numerator and the denominator.
z=-2 y=-4 x=5
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}