Skip to main content
Solve for x_1, x_2, x_3
Tick mark Image

Similar Problems from Web Search

Share

x_{1}=x_{2}-x_{3}+2
Solve x_{1}-x_{2}+x_{3}=2 for x_{1}.
x_{2}-x_{3}+2+2x_{2}=1 x_{2}-x_{3}+2-x_{3}=4
Substitute x_{2}-x_{3}+2 for x_{1} in the second and third equation.
x_{2}=-\frac{1}{3}+\frac{1}{3}x_{3} x_{3}=-1+\frac{1}{2}x_{2}
Solve these equations for x_{2} and x_{3} respectively.
x_{3}=-1+\frac{1}{2}\left(-\frac{1}{3}+\frac{1}{3}x_{3}\right)
Substitute -\frac{1}{3}+\frac{1}{3}x_{3} for x_{2} in the equation x_{3}=-1+\frac{1}{2}x_{2}.
x_{3}=-\frac{7}{5}
Solve x_{3}=-1+\frac{1}{2}\left(-\frac{1}{3}+\frac{1}{3}x_{3}\right) for x_{3}.
x_{2}=-\frac{1}{3}+\frac{1}{3}\left(-\frac{7}{5}\right)
Substitute -\frac{7}{5} for x_{3} in the equation x_{2}=-\frac{1}{3}+\frac{1}{3}x_{3}.
x_{2}=-\frac{4}{5}
Calculate x_{2} from x_{2}=-\frac{1}{3}+\frac{1}{3}\left(-\frac{7}{5}\right).
x_{1}=-\frac{4}{5}-\left(-\frac{7}{5}\right)+2
Substitute -\frac{4}{5} for x_{2} and -\frac{7}{5} for x_{3} in the equation x_{1}=x_{2}-x_{3}+2.
x_{1}=\frac{13}{5}
Calculate x_{1} from x_{1}=-\frac{4}{5}-\left(-\frac{7}{5}\right)+2.
x_{1}=\frac{13}{5} x_{2}=-\frac{4}{5} x_{3}=-\frac{7}{5}
The system is now solved.