\left\{ \begin{array}{l}{ x _ { 1 } - 2 x _ { 2 } + x _ { 3 } = 1 }\\{ x _ { 1 } + x _ { 2 } + x _ { 3 } = 5 }\\{ - x _ { 1 } + x _ { 2 } + x _ { 3 } = 2 }\end{array} \right.
Solve for x_1, x_2, x_3
x_{1} = \frac{3}{2} = 1\frac{1}{2} = 1.5
x_{2} = \frac{4}{3} = 1\frac{1}{3} \approx 1.333333333
x_{3} = \frac{13}{6} = 2\frac{1}{6} \approx 2.166666667
Share
Copied to clipboard
x_{1}=2x_{2}-x_{3}+1
Solve x_{1}-2x_{2}+x_{3}=1 for x_{1}.
2x_{2}-x_{3}+1+x_{2}+x_{3}=5 -\left(2x_{2}-x_{3}+1\right)+x_{2}+x_{3}=2
Substitute 2x_{2}-x_{3}+1 for x_{1} in the second and third equation.
x_{2}=\frac{4}{3} x_{3}=\frac{3}{2}+\frac{1}{2}x_{2}
Solve these equations for x_{2} and x_{3} respectively.
x_{3}=\frac{3}{2}+\frac{1}{2}\times \frac{4}{3}
Substitute \frac{4}{3} for x_{2} in the equation x_{3}=\frac{3}{2}+\frac{1}{2}x_{2}.
x_{3}=\frac{13}{6}
Calculate x_{3} from x_{3}=\frac{3}{2}+\frac{1}{2}\times \frac{4}{3}.
x_{1}=2\times \frac{4}{3}-\frac{13}{6}+1
Substitute \frac{4}{3} for x_{2} and \frac{13}{6} for x_{3} in the equation x_{1}=2x_{2}-x_{3}+1.
x_{1}=\frac{3}{2}
Calculate x_{1} from x_{1}=2\times \frac{4}{3}-\frac{13}{6}+1.
x_{1}=\frac{3}{2} x_{2}=\frac{4}{3} x_{3}=\frac{13}{6}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}