\left\{ \begin{array}{l}{ x - 3 y + 4 z = 22 }\\{ 2 x + y + z = 2 }\\{ - 4 x + 3 y - 4 z = - 25 }\end{array} \right.
Solve for x, y, z
x=1
y=-3
z=3
Share
Copied to clipboard
x=3y-4z+22
Solve x-3y+4z=22 for x.
2\left(3y-4z+22\right)+y+z=2 -4\left(3y-4z+22\right)+3y-4z=-25
Substitute 3y-4z+22 for x in the second and third equation.
y=-6+z z=\frac{21}{4}+\frac{3}{4}y
Solve these equations for y and z respectively.
z=\frac{21}{4}+\frac{3}{4}\left(-6+z\right)
Substitute -6+z for y in the equation z=\frac{21}{4}+\frac{3}{4}y.
z=3
Solve z=\frac{21}{4}+\frac{3}{4}\left(-6+z\right) for z.
y=-6+3
Substitute 3 for z in the equation y=-6+z.
y=-3
Calculate y from y=-6+3.
x=3\left(-3\right)-4\times 3+22
Substitute -3 for y and 3 for z in the equation x=3y-4z+22.
x=1
Calculate x from x=3\left(-3\right)-4\times 3+22.
x=1 y=-3 z=3
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}