\left\{ \begin{array}{l}{ x = 60 t }\\{ 255 - x = 110 t }\end{array} \right.
Solve for x, t
x=90
t = \frac{3}{2} = 1\frac{1}{2} = 1.5
Graph
Share
Copied to clipboard
x-60t=0
Consider the first equation. Subtract 60t from both sides.
255-x-110t=0
Consider the second equation. Subtract 110t from both sides.
-x-110t=-255
Subtract 255 from both sides. Anything subtracted from zero gives its negation.
x-60t=0,-x-110t=-255
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x-60t=0
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=60t
Add 60t to both sides of the equation.
-60t-110t=-255
Substitute 60t for x in the other equation, -x-110t=-255.
-170t=-255
Add -60t to -110t.
t=\frac{3}{2}
Divide both sides by -170.
x=60\times \frac{3}{2}
Substitute \frac{3}{2} for t in x=60t. Because the resulting equation contains only one variable, you can solve for x directly.
x=90
Multiply 60 times \frac{3}{2}.
x=90,t=\frac{3}{2}
The system is now solved.
x-60t=0
Consider the first equation. Subtract 60t from both sides.
255-x-110t=0
Consider the second equation. Subtract 110t from both sides.
-x-110t=-255
Subtract 255 from both sides. Anything subtracted from zero gives its negation.
x-60t=0,-x-110t=-255
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&-60\\-1&-110\end{matrix}\right)\left(\begin{matrix}x\\t\end{matrix}\right)=\left(\begin{matrix}0\\-255\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&-60\\-1&-110\end{matrix}\right))\left(\begin{matrix}1&-60\\-1&-110\end{matrix}\right)\left(\begin{matrix}x\\t\end{matrix}\right)=inverse(\left(\begin{matrix}1&-60\\-1&-110\end{matrix}\right))\left(\begin{matrix}0\\-255\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&-60\\-1&-110\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\t\end{matrix}\right)=inverse(\left(\begin{matrix}1&-60\\-1&-110\end{matrix}\right))\left(\begin{matrix}0\\-255\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\t\end{matrix}\right)=inverse(\left(\begin{matrix}1&-60\\-1&-110\end{matrix}\right))\left(\begin{matrix}0\\-255\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\t\end{matrix}\right)=\left(\begin{matrix}-\frac{110}{-110-\left(-60\left(-1\right)\right)}&-\frac{-60}{-110-\left(-60\left(-1\right)\right)}\\-\frac{-1}{-110-\left(-60\left(-1\right)\right)}&\frac{1}{-110-\left(-60\left(-1\right)\right)}\end{matrix}\right)\left(\begin{matrix}0\\-255\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\t\end{matrix}\right)=\left(\begin{matrix}\frac{11}{17}&-\frac{6}{17}\\-\frac{1}{170}&-\frac{1}{170}\end{matrix}\right)\left(\begin{matrix}0\\-255\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\t\end{matrix}\right)=\left(\begin{matrix}-\frac{6}{17}\left(-255\right)\\-\frac{1}{170}\left(-255\right)\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\t\end{matrix}\right)=\left(\begin{matrix}90\\\frac{3}{2}\end{matrix}\right)
Do the arithmetic.
x=90,t=\frac{3}{2}
Extract the matrix elements x and t.
x-60t=0
Consider the first equation. Subtract 60t from both sides.
255-x-110t=0
Consider the second equation. Subtract 110t from both sides.
-x-110t=-255
Subtract 255 from both sides. Anything subtracted from zero gives its negation.
x-60t=0,-x-110t=-255
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
-x-\left(-60t\right)=0,-x-110t=-255
To make x and -x equal, multiply all terms on each side of the first equation by -1 and all terms on each side of the second by 1.
-x+60t=0,-x-110t=-255
Simplify.
-x+x+60t+110t=255
Subtract -x-110t=-255 from -x+60t=0 by subtracting like terms on each side of the equal sign.
60t+110t=255
Add -x to x. Terms -x and x cancel out, leaving an equation with only one variable that can be solved.
170t=255
Add 60t to 110t.
t=\frac{3}{2}
Divide both sides by 170.
-x-110\times \frac{3}{2}=-255
Substitute \frac{3}{2} for t in -x-110t=-255. Because the resulting equation contains only one variable, you can solve for x directly.
-x-165=-255
Multiply -110 times \frac{3}{2}.
-x=-90
Add 165 to both sides of the equation.
x=90
Divide both sides by -1.
x=90,t=\frac{3}{2}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}