\left\{ \begin{array}{l}{ x + y + z = - 10 }\\{ x - y + 3 z = - 8 }\\{ 4 x + y + z = - 25 }\end{array} \right.
Solve for x, y, z
x=-5
y=-3
z=-2
Share
Copied to clipboard
x=-y-z-10
Solve x+y+z=-10 for x.
-y-z-10-y+3z=-8 4\left(-y-z-10\right)+y+z=-25
Substitute -y-z-10 for x in the second and third equation.
y=-1+z z=-5-y
Solve these equations for y and z respectively.
z=-5-\left(-1+z\right)
Substitute -1+z for y in the equation z=-5-y.
z=-2
Solve z=-5-\left(-1+z\right) for z.
y=-1-2
Substitute -2 for z in the equation y=-1+z.
y=-3
Calculate y from y=-1-2.
x=-\left(-3\right)-\left(-2\right)-10
Substitute -3 for y and -2 for z in the equation x=-y-z-10.
x=-5
Calculate x from x=-\left(-3\right)-\left(-2\right)-10.
x=-5 y=-3 z=-2
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}