\left\{ \begin{array}{l}{ 5 y + 2 z = 7 }\\{ 2 y = - 2 }\\{ 4 x + 6 y + 5 z = 4 }\end{array} \right.
Solve for y, z, x
x=-5
y=-1
z=6
Share
Copied to clipboard
y=\frac{-2}{2}
Consider the second equation. Divide both sides by 2.
y=-1
Divide -2 by 2 to get -1.
5\left(-1\right)+2z=7
Consider the first equation. Insert the known values of variables into the equation.
-5+2z=7
Multiply 5 and -1 to get -5.
2z=7+5
Add 5 to both sides.
2z=12
Add 7 and 5 to get 12.
z=\frac{12}{2}
Divide both sides by 2.
z=6
Divide 12 by 2 to get 6.
4x+6\left(-1\right)+5\times 6=4
Consider the third equation. Insert the known values of variables into the equation.
4x-6+30=4
Do the multiplications.
4x+24=4
Add -6 and 30 to get 24.
4x=4-24
Subtract 24 from both sides.
4x=-20
Subtract 24 from 4 to get -20.
x=\frac{-20}{4}
Divide both sides by 4.
x=-5
Divide -20 by 4 to get -5.
y=-1 z=6 x=-5
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}