\left\{ \begin{array}{l}{ 2 x - 46 y = 228 }\\{ x - 4 y - 6 z = 49 }\\{ - 4 x - 3 y + 4 z = - 1 }\end{array} \right.
Solve for x, y, z
x=-1
y=-5
z=-5
Share
Copied to clipboard
x-4y-6z=49 2x-46y=228 -4x-3y+4z=-1
Reorder the equations.
x=4y+6z+49
Solve x-4y-6z=49 for x.
2\left(4y+6z+49\right)-46y=228 -4\left(4y+6z+49\right)-3y+4z=-1
Substitute 4y+6z+49 for x in the second and third equation.
y=-\frac{65}{19}+\frac{6}{19}z z=-\frac{19}{20}y-\frac{39}{4}
Solve these equations for y and z respectively.
z=-\frac{19}{20}\left(-\frac{65}{19}+\frac{6}{19}z\right)-\frac{39}{4}
Substitute -\frac{65}{19}+\frac{6}{19}z for y in the equation z=-\frac{19}{20}y-\frac{39}{4}.
z=-5
Solve z=-\frac{19}{20}\left(-\frac{65}{19}+\frac{6}{19}z\right)-\frac{39}{4} for z.
y=-\frac{65}{19}+\frac{6}{19}\left(-5\right)
Substitute -5 for z in the equation y=-\frac{65}{19}+\frac{6}{19}z.
y=-5
Calculate y from y=-\frac{65}{19}+\frac{6}{19}\left(-5\right).
x=4\left(-5\right)+6\left(-5\right)+49
Substitute -5 for y and -5 for z in the equation x=4y+6z+49.
x=-1
Calculate x from x=4\left(-5\right)+6\left(-5\right)+49.
x=-1 y=-5 z=-5
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}