\left\{ \begin{array}{l}{ 2 x + 3 y + 5 z = 44 }\\{ 2 y - 6 z = 4 }\\{ z = 4 }\end{array} \right.
Solve for x, y, z
x=-9
y=14
z=4
Share
Copied to clipboard
2y-6\times 4=4
Consider the second equation. Insert the known values of variables into the equation.
2y-24=4
Multiply -6 and 4 to get -24.
2y=4+24
Add 24 to both sides.
2y=28
Add 4 and 24 to get 28.
y=\frac{28}{2}
Divide both sides by 2.
y=14
Divide 28 by 2 to get 14.
2x+3\times 14+5\times 4=44
Consider the first equation. Insert the known values of variables into the equation.
2x+42+20=44
Do the multiplications.
2x+62=44
Add 42 and 20 to get 62.
2x=44-62
Subtract 62 from both sides.
2x=-18
Subtract 62 from 44 to get -18.
x=\frac{-18}{2}
Divide both sides by 2.
x=-9
Divide -18 by 2 to get -9.
x=-9 y=14 z=4
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}