\left\{ \begin{array}{l}{ 16 x + 16 y = 384 }\\{ 3 x + 8 y = 122 }\end{array} \right.
Solve for x, y
x=14
y=10
Graph
Share
Copied to clipboard
16x+16y=384,3x+8y=122
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
16x+16y=384
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
16x=-16y+384
Subtract 16y from both sides of the equation.
x=\frac{1}{16}\left(-16y+384\right)
Divide both sides by 16.
x=-y+24
Multiply \frac{1}{16} times -16y+384.
3\left(-y+24\right)+8y=122
Substitute -y+24 for x in the other equation, 3x+8y=122.
-3y+72+8y=122
Multiply 3 times -y+24.
5y+72=122
Add -3y to 8y.
5y=50
Subtract 72 from both sides of the equation.
y=10
Divide both sides by 5.
x=-10+24
Substitute 10 for y in x=-y+24. Because the resulting equation contains only one variable, you can solve for x directly.
x=14
Add 24 to -10.
x=14,y=10
The system is now solved.
16x+16y=384,3x+8y=122
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}16&16\\3&8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}384\\122\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}16&16\\3&8\end{matrix}\right))\left(\begin{matrix}16&16\\3&8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}16&16\\3&8\end{matrix}\right))\left(\begin{matrix}384\\122\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}16&16\\3&8\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}16&16\\3&8\end{matrix}\right))\left(\begin{matrix}384\\122\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}16&16\\3&8\end{matrix}\right))\left(\begin{matrix}384\\122\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{8}{16\times 8-16\times 3}&-\frac{16}{16\times 8-16\times 3}\\-\frac{3}{16\times 8-16\times 3}&\frac{16}{16\times 8-16\times 3}\end{matrix}\right)\left(\begin{matrix}384\\122\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{10}&-\frac{1}{5}\\-\frac{3}{80}&\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}384\\122\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{10}\times 384-\frac{1}{5}\times 122\\-\frac{3}{80}\times 384+\frac{1}{5}\times 122\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}14\\10\end{matrix}\right)
Do the arithmetic.
x=14,y=10
Extract the matrix elements x and y.
16x+16y=384,3x+8y=122
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
3\times 16x+3\times 16y=3\times 384,16\times 3x+16\times 8y=16\times 122
To make 16x and 3x equal, multiply all terms on each side of the first equation by 3 and all terms on each side of the second by 16.
48x+48y=1152,48x+128y=1952
Simplify.
48x-48x+48y-128y=1152-1952
Subtract 48x+128y=1952 from 48x+48y=1152 by subtracting like terms on each side of the equal sign.
48y-128y=1152-1952
Add 48x to -48x. Terms 48x and -48x cancel out, leaving an equation with only one variable that can be solved.
-80y=1152-1952
Add 48y to -128y.
-80y=-800
Add 1152 to -1952.
y=10
Divide both sides by -80.
3x+8\times 10=122
Substitute 10 for y in 3x+8y=122. Because the resulting equation contains only one variable, you can solve for x directly.
3x+80=122
Multiply 8 times 10.
3x=42
Subtract 80 from both sides of the equation.
x=14
Divide both sides by 3.
x=14,y=10
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}