\left\{ \begin{array}{l}{ - x + 4 z = 1 }\\{ - 2 x - 3 y + 4 z = 9 }\\{ x = - 5 }\end{array} \right.
Solve for x, z, y
x=-5
y=-1
z=-1
Share
Copied to clipboard
-\left(-5\right)+4z=1
Consider the first equation. Insert the known values of variables into the equation.
5+4z=1
The opposite of -5 is 5.
4z=1-5
Subtract 5 from both sides.
4z=-4
Subtract 5 from 1 to get -4.
z=\frac{-4}{4}
Divide both sides by 4.
z=-1
Divide -4 by 4 to get -1.
-2\left(-5\right)-3y+4\left(-1\right)=9
Consider the second equation. Insert the known values of variables into the equation.
10-3y-4=9
Do the multiplications.
6-3y=9
Subtract 4 from 10 to get 6.
-3y=9-6
Subtract 6 from both sides.
-3y=3
Subtract 6 from 9 to get 3.
y=\frac{3}{-3}
Divide both sides by -3.
y=-1
Divide 3 by -3 to get -1.
x=-5 z=-1 y=-1
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}