Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x+3y=10
Consider the first equation. Multiply both sides of the equation by 12, the least common multiple of 3,4,6.
3\left(3x+20y\right)-5\left(8y+1\right)=12x+16y
Consider the second equation. Multiply both sides of the equation by 15, the least common multiple of 5,3,15.
9x+60y-5\left(8y+1\right)=12x+16y
Use the distributive property to multiply 3 by 3x+20y.
9x+60y-40y-5=12x+16y
Use the distributive property to multiply -5 by 8y+1.
9x+20y-5=12x+16y
Combine 60y and -40y to get 20y.
9x+20y-5-12x=16y
Subtract 12x from both sides.
-3x+20y-5=16y
Combine 9x and -12x to get -3x.
-3x+20y-5-16y=0
Subtract 16y from both sides.
-3x+4y-5=0
Combine 20y and -16y to get 4y.
-3x+4y=5
Add 5 to both sides. Anything plus zero gives itself.
4x+3y=10,-3x+4y=5
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
4x+3y=10
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
4x=-3y+10
Subtract 3y from both sides of the equation.
x=\frac{1}{4}\left(-3y+10\right)
Divide both sides by 4.
x=-\frac{3}{4}y+\frac{5}{2}
Multiply \frac{1}{4} times -3y+10.
-3\left(-\frac{3}{4}y+\frac{5}{2}\right)+4y=5
Substitute -\frac{3y}{4}+\frac{5}{2} for x in the other equation, -3x+4y=5.
\frac{9}{4}y-\frac{15}{2}+4y=5
Multiply -3 times -\frac{3y}{4}+\frac{5}{2}.
\frac{25}{4}y-\frac{15}{2}=5
Add \frac{9y}{4} to 4y.
\frac{25}{4}y=\frac{25}{2}
Add \frac{15}{2} to both sides of the equation.
y=2
Divide both sides of the equation by \frac{25}{4}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{3}{4}\times 2+\frac{5}{2}
Substitute 2 for y in x=-\frac{3}{4}y+\frac{5}{2}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{-3+5}{2}
Multiply -\frac{3}{4} times 2.
x=1
Add \frac{5}{2} to -\frac{3}{2} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=1,y=2
The system is now solved.
4x+3y=10
Consider the first equation. Multiply both sides of the equation by 12, the least common multiple of 3,4,6.
3\left(3x+20y\right)-5\left(8y+1\right)=12x+16y
Consider the second equation. Multiply both sides of the equation by 15, the least common multiple of 5,3,15.
9x+60y-5\left(8y+1\right)=12x+16y
Use the distributive property to multiply 3 by 3x+20y.
9x+60y-40y-5=12x+16y
Use the distributive property to multiply -5 by 8y+1.
9x+20y-5=12x+16y
Combine 60y and -40y to get 20y.
9x+20y-5-12x=16y
Subtract 12x from both sides.
-3x+20y-5=16y
Combine 9x and -12x to get -3x.
-3x+20y-5-16y=0
Subtract 16y from both sides.
-3x+4y-5=0
Combine 20y and -16y to get 4y.
-3x+4y=5
Add 5 to both sides. Anything plus zero gives itself.
4x+3y=10,-3x+4y=5
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}4&3\\-3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\5\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}4&3\\-3&4\end{matrix}\right))\left(\begin{matrix}4&3\\-3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\-3&4\end{matrix}\right))\left(\begin{matrix}10\\5\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}4&3\\-3&4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\-3&4\end{matrix}\right))\left(\begin{matrix}10\\5\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\-3&4\end{matrix}\right))\left(\begin{matrix}10\\5\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{4\times 4-3\left(-3\right)}&-\frac{3}{4\times 4-3\left(-3\right)}\\-\frac{-3}{4\times 4-3\left(-3\right)}&\frac{4}{4\times 4-3\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}10\\5\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{25}&-\frac{3}{25}\\\frac{3}{25}&\frac{4}{25}\end{matrix}\right)\left(\begin{matrix}10\\5\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{25}\times 10-\frac{3}{25}\times 5\\\frac{3}{25}\times 10+\frac{4}{25}\times 5\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\2\end{matrix}\right)
Do the arithmetic.
x=1,y=2
Extract the matrix elements x and y.
4x+3y=10
Consider the first equation. Multiply both sides of the equation by 12, the least common multiple of 3,4,6.
3\left(3x+20y\right)-5\left(8y+1\right)=12x+16y
Consider the second equation. Multiply both sides of the equation by 15, the least common multiple of 5,3,15.
9x+60y-5\left(8y+1\right)=12x+16y
Use the distributive property to multiply 3 by 3x+20y.
9x+60y-40y-5=12x+16y
Use the distributive property to multiply -5 by 8y+1.
9x+20y-5=12x+16y
Combine 60y and -40y to get 20y.
9x+20y-5-12x=16y
Subtract 12x from both sides.
-3x+20y-5=16y
Combine 9x and -12x to get -3x.
-3x+20y-5-16y=0
Subtract 16y from both sides.
-3x+4y-5=0
Combine 20y and -16y to get 4y.
-3x+4y=5
Add 5 to both sides. Anything plus zero gives itself.
4x+3y=10,-3x+4y=5
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
-3\times 4x-3\times 3y=-3\times 10,4\left(-3\right)x+4\times 4y=4\times 5
To make 4x and -3x equal, multiply all terms on each side of the first equation by -3 and all terms on each side of the second by 4.
-12x-9y=-30,-12x+16y=20
Simplify.
-12x+12x-9y-16y=-30-20
Subtract -12x+16y=20 from -12x-9y=-30 by subtracting like terms on each side of the equal sign.
-9y-16y=-30-20
Add -12x to 12x. Terms -12x and 12x cancel out, leaving an equation with only one variable that can be solved.
-25y=-30-20
Add -9y to -16y.
-25y=-50
Add -30 to -20.
y=2
Divide both sides by -25.
-3x+4\times 2=5
Substitute 2 for y in -3x+4y=5. Because the resulting equation contains only one variable, you can solve for x directly.
-3x+8=5
Multiply 4 times 2.
-3x=-3
Subtract 8 from both sides of the equation.
x=1
Divide both sides by -3.
x=1,y=2
The system is now solved.