Skip to main content
Solve for u, v
Tick mark Image

Similar Problems from Web Search

Share

u-30v=-65,-3u+80v=165
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
u-30v=-65
Choose one of the equations and solve it for u by isolating u on the left hand side of the equal sign.
u=30v-65
Add 30v to both sides of the equation.
-3\left(30v-65\right)+80v=165
Substitute 30v-65 for u in the other equation, -3u+80v=165.
-90v+195+80v=165
Multiply -3 times 30v-65.
-10v+195=165
Add -90v to 80v.
-10v=-30
Subtract 195 from both sides of the equation.
v=3
Divide both sides by -10.
u=30\times 3-65
Substitute 3 for v in u=30v-65. Because the resulting equation contains only one variable, you can solve for u directly.
u=90-65
Multiply 30 times 3.
u=25
Add -65 to 90.
u=25,v=3
The system is now solved.
u-30v=-65,-3u+80v=165
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&-30\\-3&80\end{matrix}\right)\left(\begin{matrix}u\\v\end{matrix}\right)=\left(\begin{matrix}-65\\165\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&-30\\-3&80\end{matrix}\right))\left(\begin{matrix}1&-30\\-3&80\end{matrix}\right)\left(\begin{matrix}u\\v\end{matrix}\right)=inverse(\left(\begin{matrix}1&-30\\-3&80\end{matrix}\right))\left(\begin{matrix}-65\\165\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&-30\\-3&80\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}u\\v\end{matrix}\right)=inverse(\left(\begin{matrix}1&-30\\-3&80\end{matrix}\right))\left(\begin{matrix}-65\\165\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}u\\v\end{matrix}\right)=inverse(\left(\begin{matrix}1&-30\\-3&80\end{matrix}\right))\left(\begin{matrix}-65\\165\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}u\\v\end{matrix}\right)=\left(\begin{matrix}\frac{80}{80-\left(-30\left(-3\right)\right)}&-\frac{-30}{80-\left(-30\left(-3\right)\right)}\\-\frac{-3}{80-\left(-30\left(-3\right)\right)}&\frac{1}{80-\left(-30\left(-3\right)\right)}\end{matrix}\right)\left(\begin{matrix}-65\\165\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}u\\v\end{matrix}\right)=\left(\begin{matrix}-8&-3\\-\frac{3}{10}&-\frac{1}{10}\end{matrix}\right)\left(\begin{matrix}-65\\165\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}u\\v\end{matrix}\right)=\left(\begin{matrix}-8\left(-65\right)-3\times 165\\-\frac{3}{10}\left(-65\right)-\frac{1}{10}\times 165\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}u\\v\end{matrix}\right)=\left(\begin{matrix}25\\3\end{matrix}\right)
Do the arithmetic.
u=25,v=3
Extract the matrix elements u and v.
u-30v=-65,-3u+80v=165
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
-3u-3\left(-30\right)v=-3\left(-65\right),-3u+80v=165
To make u and -3u equal, multiply all terms on each side of the first equation by -3 and all terms on each side of the second by 1.
-3u+90v=195,-3u+80v=165
Simplify.
-3u+3u+90v-80v=195-165
Subtract -3u+80v=165 from -3u+90v=195 by subtracting like terms on each side of the equal sign.
90v-80v=195-165
Add -3u to 3u. Terms -3u and 3u cancel out, leaving an equation with only one variable that can be solved.
10v=195-165
Add 90v to -80v.
10v=30
Add 195 to -165.
v=3
Divide both sides by 10.
-3u+80\times 3=165
Substitute 3 for v in -3u+80v=165. Because the resulting equation contains only one variable, you can solve for u directly.
-3u+240=165
Multiply 80 times 3.
-3u=-75
Subtract 240 from both sides of the equation.
u=25
Divide both sides by -3.
u=25,v=3
The system is now solved.