\left\{ \begin{array} { r } { 2 x - y + 5 z = 16 } \\ { 2 - 6 y + 2 z = - 9 } \\ { 3 x + 4 y - z = 32 } \end{array} \right.
Solve for x, y, z
x = \frac{131}{16} = 8\frac{3}{16} = 8.1875
y = \frac{31}{16} = 1\frac{15}{16} = 1.9375
z=\frac{5}{16}=0.3125
Share
Copied to clipboard
y=2x+5z-16
Solve 2x-y+5z=16 for y.
2-6\left(2x+5z-16\right)+2z=-9 3x+4\left(2x+5z-16\right)-z=32
Substitute 2x+5z-16 for y in the second and third equation.
x=\frac{107}{12}-\frac{7}{3}z z=-\frac{11}{19}x+\frac{96}{19}
Solve these equations for x and z respectively.
z=-\frac{11}{19}\left(\frac{107}{12}-\frac{7}{3}z\right)+\frac{96}{19}
Substitute \frac{107}{12}-\frac{7}{3}z for x in the equation z=-\frac{11}{19}x+\frac{96}{19}.
z=\frac{5}{16}
Solve z=-\frac{11}{19}\left(\frac{107}{12}-\frac{7}{3}z\right)+\frac{96}{19} for z.
x=\frac{107}{12}-\frac{7}{3}\times \frac{5}{16}
Substitute \frac{5}{16} for z in the equation x=\frac{107}{12}-\frac{7}{3}z.
x=\frac{131}{16}
Calculate x from x=\frac{107}{12}-\frac{7}{3}\times \frac{5}{16}.
y=2\times \frac{131}{16}+5\times \frac{5}{16}-16
Substitute \frac{131}{16} for x and \frac{5}{16} for z in the equation y=2x+5z-16.
y=\frac{31}{16}
Calculate y from y=2\times \frac{131}{16}+5\times \frac{5}{16}-16.
x=\frac{131}{16} y=\frac{31}{16} z=\frac{5}{16}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}