\left\{ \begin{array} { r } { - 6 x + 6 y + 5 z = 3 } \\ { 4 y - 3 z = 3 } \\ { - 2 z = - 6 } \end{array} \right.
Solve for x, y, z
x=5
y=3
z=3
Share
Copied to clipboard
z=\frac{-6}{-2}
Consider the third equation. Divide both sides by -2.
z=3
Divide -6 by -2 to get 3.
4y-3\times 3=3
Consider the second equation. Insert the known values of variables into the equation.
4y-9=3
Multiply -3 and 3 to get -9.
4y=3+9
Add 9 to both sides.
4y=12
Add 3 and 9 to get 12.
y=\frac{12}{4}
Divide both sides by 4.
y=3
Divide 12 by 4 to get 3.
-6x+6\times 3+5\times 3=3
Consider the first equation. Insert the known values of variables into the equation.
-6x+18+15=3
Do the multiplications.
-6x+33=3
Add 18 and 15 to get 33.
-6x=3-33
Subtract 33 from both sides.
-6x=-30
Subtract 33 from 3 to get -30.
x=\frac{-30}{-6}
Divide both sides by -6.
x=5
Divide -30 by -6 to get 5.
x=5 y=3 z=3
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}