\left\{ \begin{array} { r } { - 2 x + 2 y + 5 z = - 3 } \\ { 3 y + 5 z = - 3 } \\ { - 3 z = - 9 } \end{array} \right.
Solve for x, y, z
x=3
y=-6
z=3
Share
Copied to clipboard
z=\frac{-9}{-3}
Consider the third equation. Divide both sides by -3.
z=3
Divide -9 by -3 to get 3.
3y+5\times 3=-3
Consider the second equation. Insert the known values of variables into the equation.
3y+15=-3
Multiply 5 and 3 to get 15.
3y=-3-15
Subtract 15 from both sides.
3y=-18
Subtract 15 from -3 to get -18.
y=\frac{-18}{3}
Divide both sides by 3.
y=-6
Divide -18 by 3 to get -6.
-2x+2\left(-6\right)+5\times 3=-3
Consider the first equation. Insert the known values of variables into the equation.
-2x-12+15=-3
Do the multiplications.
-2x+3=-3
Add -12 and 15 to get 3.
-2x=-3-3
Subtract 3 from both sides.
-2x=-6
Subtract 3 from -3 to get -6.
x=\frac{-6}{-2}
Divide both sides by -2.
x=3
Divide -6 by -2 to get 3.
x=3 y=-6 z=3
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}