\left\{ \begin{array} { l } { z = x ^ { 2 } y ( 4 - x - y ) } \\ { x = \sqrt { 5 } - 1 } \\ { y = \frac { 5 - \sqrt { 5 } } { 2 } } \end{array} \right.
Solve for z, x, y
x=\sqrt{5}-1\approx 1.236067977
y = \frac{5 - \sqrt{5}}{2} \approx 1.381966011
z=70-30\sqrt{5}\approx 2.917960675
Share
Copied to clipboard
y=\frac{5}{2}-\frac{1}{2}\sqrt{5}
Consider the third equation. Divide each term of 5-\sqrt{5} by 2 to get \frac{5}{2}-\frac{1}{2}\sqrt{5}.
z=\left(\sqrt{5}-1\right)^{2}\left(\frac{5}{2}-\frac{1}{2}\sqrt{5}\right)\left(4-\left(\sqrt{5}-1\right)-\left(\frac{5}{2}-\frac{1}{2}\sqrt{5}\right)\right)
Consider the first equation. Insert the known values of variables into the equation.
z=\left(\left(\sqrt{5}\right)^{2}-2\sqrt{5}+1\right)\left(\frac{5}{2}-\frac{1}{2}\sqrt{5}\right)\left(4-\left(\sqrt{5}-1\right)-\left(\frac{5}{2}-\frac{1}{2}\sqrt{5}\right)\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{5}-1\right)^{2}.
z=\left(5-2\sqrt{5}+1\right)\left(\frac{5}{2}-\frac{1}{2}\sqrt{5}\right)\left(4-\left(\sqrt{5}-1\right)-\left(\frac{5}{2}-\frac{1}{2}\sqrt{5}\right)\right)
The square of \sqrt{5} is 5.
z=\left(6-2\sqrt{5}\right)\left(\frac{5}{2}-\frac{1}{2}\sqrt{5}\right)\left(4-\left(\sqrt{5}-1\right)-\left(\frac{5}{2}-\frac{1}{2}\sqrt{5}\right)\right)
Add 5 and 1 to get 6.
z=\left(6-2\sqrt{5}\right)\left(\frac{5}{2}-\frac{1}{2}\sqrt{5}\right)\left(4-\sqrt{5}+1-\left(\frac{5}{2}-\frac{1}{2}\sqrt{5}\right)\right)
To find the opposite of \sqrt{5}-1, find the opposite of each term.
z=\left(6-2\sqrt{5}\right)\left(\frac{5}{2}-\frac{1}{2}\sqrt{5}\right)\left(5-\sqrt{5}-\left(\frac{5}{2}-\frac{1}{2}\sqrt{5}\right)\right)
Add 4 and 1 to get 5.
z=\left(6-2\sqrt{5}\right)\left(\frac{5}{2}-\frac{1}{2}\sqrt{5}\right)\left(5-\sqrt{5}-\frac{5}{2}+\frac{1}{2}\sqrt{5}\right)
To find the opposite of \frac{5}{2}-\frac{1}{2}\sqrt{5}, find the opposite of each term.
z=\left(6-2\sqrt{5}\right)\left(\frac{5}{2}-\frac{1}{2}\sqrt{5}\right)\left(\frac{5}{2}-\sqrt{5}+\frac{1}{2}\sqrt{5}\right)
Subtract \frac{5}{2} from 5 to get \frac{5}{2}.
z=\left(6-2\sqrt{5}\right)\left(\frac{5}{2}-\frac{1}{2}\sqrt{5}\right)\left(\frac{5}{2}-\frac{1}{2}\sqrt{5}\right)
Combine -\sqrt{5} and \frac{1}{2}\sqrt{5} to get -\frac{1}{2}\sqrt{5}.
z=\left(6-2\sqrt{5}\right)\left(\frac{5}{2}-\frac{1}{2}\sqrt{5}\right)^{2}
Multiply \frac{5}{2}-\frac{1}{2}\sqrt{5} and \frac{5}{2}-\frac{1}{2}\sqrt{5} to get \left(\frac{5}{2}-\frac{1}{2}\sqrt{5}\right)^{2}.
z=6\left(\frac{5}{2}-\frac{1}{2}\sqrt{5}\right)^{2}-2\sqrt{5}\left(\frac{5}{2}-\frac{1}{2}\sqrt{5}\right)^{2}
Use the distributive property to multiply 6-2\sqrt{5} by \left(\frac{5}{2}-\frac{1}{2}\sqrt{5}\right)^{2}.
z=6\left(\frac{25}{4}-\frac{5}{2}\sqrt{5}+\frac{1}{4}\left(\sqrt{5}\right)^{2}\right)-2\sqrt{5}\left(\frac{5}{2}-\frac{1}{2}\sqrt{5}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\frac{5}{2}-\frac{1}{2}\sqrt{5}\right)^{2}.
z=6\left(\frac{25}{4}-\frac{5}{2}\sqrt{5}+\frac{1}{4}\times 5\right)-2\sqrt{5}\left(\frac{5}{2}-\frac{1}{2}\sqrt{5}\right)^{2}
The square of \sqrt{5} is 5.
z=6\left(\frac{25}{4}-\frac{5}{2}\sqrt{5}+\frac{5}{4}\right)-2\sqrt{5}\left(\frac{5}{2}-\frac{1}{2}\sqrt{5}\right)^{2}
Multiply \frac{1}{4} and 5 to get \frac{5}{4}.
z=6\left(\frac{15}{2}-\frac{5}{2}\sqrt{5}\right)-2\sqrt{5}\left(\frac{5}{2}-\frac{1}{2}\sqrt{5}\right)^{2}
Add \frac{25}{4} and \frac{5}{4} to get \frac{15}{2}.
z=45-15\sqrt{5}-2\sqrt{5}\left(\frac{5}{2}-\frac{1}{2}\sqrt{5}\right)^{2}
Use the distributive property to multiply 6 by \frac{15}{2}-\frac{5}{2}\sqrt{5}.
z=45-15\sqrt{5}-2\sqrt{5}\left(\frac{25}{4}-\frac{5}{2}\sqrt{5}+\frac{1}{4}\left(\sqrt{5}\right)^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\frac{5}{2}-\frac{1}{2}\sqrt{5}\right)^{2}.
z=45-15\sqrt{5}-2\sqrt{5}\left(\frac{25}{4}-\frac{5}{2}\sqrt{5}+\frac{1}{4}\times 5\right)
The square of \sqrt{5} is 5.
z=45-15\sqrt{5}-2\sqrt{5}\left(\frac{25}{4}-\frac{5}{2}\sqrt{5}+\frac{5}{4}\right)
Multiply \frac{1}{4} and 5 to get \frac{5}{4}.
z=45-15\sqrt{5}-2\sqrt{5}\left(\frac{15}{2}-\frac{5}{2}\sqrt{5}\right)
Add \frac{25}{4} and \frac{5}{4} to get \frac{15}{2}.
z=45-15\sqrt{5}-15\sqrt{5}+5\left(\sqrt{5}\right)^{2}
Use the distributive property to multiply -2\sqrt{5} by \frac{15}{2}-\frac{5}{2}\sqrt{5}.
z=45-15\sqrt{5}-15\sqrt{5}+5\times 5
The square of \sqrt{5} is 5.
z=45-15\sqrt{5}-15\sqrt{5}+25
Multiply 5 and 5 to get 25.
z=45-30\sqrt{5}+25
Combine -15\sqrt{5} and -15\sqrt{5} to get -30\sqrt{5}.
z=70-30\sqrt{5}
Add 45 and 25 to get 70.
z=70-30\sqrt{5} x=\sqrt{5}-1 y=\frac{5}{2}-\frac{1}{2}\sqrt{5}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}