\left\{ \begin{array} { l } { y - x = 9 } \\ { 10 + 2 x = - 2 y } \end{array} \right.
Solve for y, x
x=-7
y=2
Graph
Share
Copied to clipboard
10+2x+2y=0
Consider the second equation. Add 2y to both sides.
2x+2y=-10
Subtract 10 from both sides. Anything subtracted from zero gives its negation.
y-x=9,2y+2x=-10
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
y-x=9
Choose one of the equations and solve it for y by isolating y on the left hand side of the equal sign.
y=x+9
Add x to both sides of the equation.
2\left(x+9\right)+2x=-10
Substitute x+9 for y in the other equation, 2y+2x=-10.
2x+18+2x=-10
Multiply 2 times x+9.
4x+18=-10
Add 2x to 2x.
4x=-28
Subtract 18 from both sides of the equation.
x=-7
Divide both sides by 4.
y=-7+9
Substitute -7 for x in y=x+9. Because the resulting equation contains only one variable, you can solve for y directly.
y=2
Add 9 to -7.
y=2,x=-7
The system is now solved.
10+2x+2y=0
Consider the second equation. Add 2y to both sides.
2x+2y=-10
Subtract 10 from both sides. Anything subtracted from zero gives its negation.
y-x=9,2y+2x=-10
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&-1\\2&2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}9\\-10\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&-1\\2&2\end{matrix}\right))\left(\begin{matrix}1&-1\\2&2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\2&2\end{matrix}\right))\left(\begin{matrix}9\\-10\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&-1\\2&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\2&2\end{matrix}\right))\left(\begin{matrix}9\\-10\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\2&2\end{matrix}\right))\left(\begin{matrix}9\\-10\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2-\left(-2\right)}&-\frac{-1}{2-\left(-2\right)}\\-\frac{2}{2-\left(-2\right)}&\frac{1}{2-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}9\\-10\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&\frac{1}{4}\\-\frac{1}{2}&\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}9\\-10\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 9+\frac{1}{4}\left(-10\right)\\-\frac{1}{2}\times 9+\frac{1}{4}\left(-10\right)\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}2\\-7\end{matrix}\right)
Do the arithmetic.
y=2,x=-7
Extract the matrix elements y and x.
10+2x+2y=0
Consider the second equation. Add 2y to both sides.
2x+2y=-10
Subtract 10 from both sides. Anything subtracted from zero gives its negation.
y-x=9,2y+2x=-10
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
2y+2\left(-1\right)x=2\times 9,2y+2x=-10
To make y and 2y equal, multiply all terms on each side of the first equation by 2 and all terms on each side of the second by 1.
2y-2x=18,2y+2x=-10
Simplify.
2y-2y-2x-2x=18+10
Subtract 2y+2x=-10 from 2y-2x=18 by subtracting like terms on each side of the equal sign.
-2x-2x=18+10
Add 2y to -2y. Terms 2y and -2y cancel out, leaving an equation with only one variable that can be solved.
-4x=18+10
Add -2x to -2x.
-4x=28
Add 18 to 10.
x=-7
Divide both sides by -4.
2y+2\left(-7\right)=-10
Substitute -7 for x in 2y+2x=-10. Because the resulting equation contains only one variable, you can solve for y directly.
2y-14=-10
Multiply 2 times -7.
2y=4
Add 14 to both sides of the equation.
y=2
Divide both sides by 2.
y=2,x=-7
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}