\left\{ \begin{array} { l } { y - 2 = 4 x - 16 } \\ { x ^ { 2 } + y ^ { 2 } = 22 } \end{array} \right.
Solve for y, x
x=\frac{56-\sqrt{178}}{17}\approx 2.509313879\text{, }y=\frac{-4\sqrt{178}-14}{17}\approx -3.962744486
x=\frac{\sqrt{178}+56}{17}\approx 4.078921416\text{, }y=\frac{4\sqrt{178}-14}{17}\approx 2.315685662
Graph
Share
Copied to clipboard
y-2-4x=-16
Consider the first equation. Subtract 4x from both sides.
y-4x=-16+2
Add 2 to both sides.
y-4x=-14
Add -16 and 2 to get -14.
y-4x=-14,x^{2}+y^{2}=22
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
y-4x=-14
Solve y-4x=-14 for y by isolating y on the left hand side of the equal sign.
y=4x-14
Subtract -4x from both sides of the equation.
x^{2}+\left(4x-14\right)^{2}=22
Substitute 4x-14 for y in the other equation, x^{2}+y^{2}=22.
x^{2}+16x^{2}-112x+196=22
Square 4x-14.
17x^{2}-112x+196=22
Add x^{2} to 16x^{2}.
17x^{2}-112x+174=0
Subtract 22 from both sides of the equation.
x=\frac{-\left(-112\right)±\sqrt{\left(-112\right)^{2}-4\times 17\times 174}}{2\times 17}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\times 4^{2} for a, 1\left(-14\right)\times 2\times 4 for b, and 174 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-112\right)±\sqrt{12544-4\times 17\times 174}}{2\times 17}
Square 1\left(-14\right)\times 2\times 4.
x=\frac{-\left(-112\right)±\sqrt{12544-68\times 174}}{2\times 17}
Multiply -4 times 1+1\times 4^{2}.
x=\frac{-\left(-112\right)±\sqrt{12544-11832}}{2\times 17}
Multiply -68 times 174.
x=\frac{-\left(-112\right)±\sqrt{712}}{2\times 17}
Add 12544 to -11832.
x=\frac{-\left(-112\right)±2\sqrt{178}}{2\times 17}
Take the square root of 712.
x=\frac{112±2\sqrt{178}}{2\times 17}
The opposite of 1\left(-14\right)\times 2\times 4 is 112.
x=\frac{112±2\sqrt{178}}{34}
Multiply 2 times 1+1\times 4^{2}.
x=\frac{2\sqrt{178}+112}{34}
Now solve the equation x=\frac{112±2\sqrt{178}}{34} when ± is plus. Add 112 to 2\sqrt{178}.
x=\frac{\sqrt{178}+56}{17}
Divide 112+2\sqrt{178} by 34.
x=\frac{112-2\sqrt{178}}{34}
Now solve the equation x=\frac{112±2\sqrt{178}}{34} when ± is minus. Subtract 2\sqrt{178} from 112.
x=\frac{56-\sqrt{178}}{17}
Divide 112-2\sqrt{178} by 34.
y=4\times \frac{\sqrt{178}+56}{17}-14
There are two solutions for x: \frac{56+\sqrt{178}}{17} and \frac{56-\sqrt{178}}{17}. Substitute \frac{56+\sqrt{178}}{17} for x in the equation y=4x-14 to find the corresponding solution for y that satisfies both equations.
y=4\times \frac{56-\sqrt{178}}{17}-14
Now substitute \frac{56-\sqrt{178}}{17} for x in the equation y=4x-14 and solve to find the corresponding solution for y that satisfies both equations.
y=4\times \frac{\sqrt{178}+56}{17}-14,x=\frac{\sqrt{178}+56}{17}\text{ or }y=4\times \frac{56-\sqrt{178}}{17}-14,x=\frac{56-\sqrt{178}}{17}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}