Skip to main content
Solve for y, x
Tick mark Image
Graph

Similar Problems from Web Search

Share

y-2-4x=-16
Consider the first equation. Subtract 4x from both sides.
y-4x=-16+2
Add 2 to both sides.
y-4x=-14
Add -16 and 2 to get -14.
y-4x=-14,x^{2}+y^{2}=22
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
y-4x=-14
Solve y-4x=-14 for y by isolating y on the left hand side of the equal sign.
y=4x-14
Subtract -4x from both sides of the equation.
x^{2}+\left(4x-14\right)^{2}=22
Substitute 4x-14 for y in the other equation, x^{2}+y^{2}=22.
x^{2}+16x^{2}-112x+196=22
Square 4x-14.
17x^{2}-112x+196=22
Add x^{2} to 16x^{2}.
17x^{2}-112x+174=0
Subtract 22 from both sides of the equation.
x=\frac{-\left(-112\right)±\sqrt{\left(-112\right)^{2}-4\times 17\times 174}}{2\times 17}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\times 4^{2} for a, 1\left(-14\right)\times 2\times 4 for b, and 174 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-112\right)±\sqrt{12544-4\times 17\times 174}}{2\times 17}
Square 1\left(-14\right)\times 2\times 4.
x=\frac{-\left(-112\right)±\sqrt{12544-68\times 174}}{2\times 17}
Multiply -4 times 1+1\times 4^{2}.
x=\frac{-\left(-112\right)±\sqrt{12544-11832}}{2\times 17}
Multiply -68 times 174.
x=\frac{-\left(-112\right)±\sqrt{712}}{2\times 17}
Add 12544 to -11832.
x=\frac{-\left(-112\right)±2\sqrt{178}}{2\times 17}
Take the square root of 712.
x=\frac{112±2\sqrt{178}}{2\times 17}
The opposite of 1\left(-14\right)\times 2\times 4 is 112.
x=\frac{112±2\sqrt{178}}{34}
Multiply 2 times 1+1\times 4^{2}.
x=\frac{2\sqrt{178}+112}{34}
Now solve the equation x=\frac{112±2\sqrt{178}}{34} when ± is plus. Add 112 to 2\sqrt{178}.
x=\frac{\sqrt{178}+56}{17}
Divide 112+2\sqrt{178} by 34.
x=\frac{112-2\sqrt{178}}{34}
Now solve the equation x=\frac{112±2\sqrt{178}}{34} when ± is minus. Subtract 2\sqrt{178} from 112.
x=\frac{56-\sqrt{178}}{17}
Divide 112-2\sqrt{178} by 34.
y=4\times \frac{\sqrt{178}+56}{17}-14
There are two solutions for x: \frac{56+\sqrt{178}}{17} and \frac{56-\sqrt{178}}{17}. Substitute \frac{56+\sqrt{178}}{17} for x in the equation y=4x-14 to find the corresponding solution for y that satisfies both equations.
y=4\times \frac{56-\sqrt{178}}{17}-14
Now substitute \frac{56-\sqrt{178}}{17} for x in the equation y=4x-14 and solve to find the corresponding solution for y that satisfies both equations.
y=4\times \frac{\sqrt{178}+56}{17}-14,x=\frac{\sqrt{178}+56}{17}\text{ or }y=4\times \frac{56-\sqrt{178}}{17}-14,x=\frac{56-\sqrt{178}}{17}
The system is now solved.