\left\{ \begin{array} { l } { y = x } \\ { \frac { x ^ { 2 } } { 2 } - \frac { y ^ { 2 } } { 4 } = 1 } \end{array} \right.
Solve for y, x
x=-2\text{, }y=-2
x=2\text{, }y=2
Graph
Share
Copied to clipboard
y-x=0
Consider the first equation. Subtract x from both sides.
2x^{2}-y^{2}=4
Consider the second equation. Multiply both sides of the equation by 4, the least common multiple of 2,4.
y-x=0,2x^{2}-y^{2}=4
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
y-x=0
Solve y-x=0 for y by isolating y on the left hand side of the equal sign.
y=x
Subtract -x from both sides of the equation.
2x^{2}-x^{2}=4
Substitute x for y in the other equation, 2x^{2}-y^{2}=4.
x^{2}=4
Add 2x^{2} to -x^{2}.
x^{2}-4=0
Subtract 4 from both sides of the equation.
x=\frac{0±\sqrt{0^{2}-4\left(-4\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2-1^{2} for a, -0\times 2 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-4\right)}}{2}
Square -0\times 2.
x=\frac{0±\sqrt{16}}{2}
Multiply -4 times -4.
x=\frac{0±4}{2}
Take the square root of 16.
x=2
Now solve the equation x=\frac{0±4}{2} when ± is plus. Divide 4 by 2.
x=-2
Now solve the equation x=\frac{0±4}{2} when ± is minus. Divide -4 by 2.
y=2
There are two solutions for x: 2 and -2. Substitute 2 for x in the equation y=x to find the corresponding solution for y that satisfies both equations.
y=-2
Now substitute -2 for x in the equation y=x and solve to find the corresponding solution for y that satisfies both equations.
y=2,x=2\text{ or }y=-2,x=-2
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}