\left\{ \begin{array} { l } { y = x + 2 } \\ { \frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 3 } = 1 } \end{array} \right.
Solve for y, x
x=-2\text{, }y=0
x=-\frac{2}{7}\approx -0.285714286\text{, }y=\frac{12}{7}\approx 1.714285714
Graph
Share
Copied to clipboard
y-x=2
Consider the first equation. Subtract x from both sides.
3x^{2}+4y^{2}=12
Consider the second equation. Multiply both sides of the equation by 12, the least common multiple of 4,3.
y-x=2,3x^{2}+4y^{2}=12
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
y-x=2
Solve y-x=2 for y by isolating y on the left hand side of the equal sign.
y=x+2
Subtract -x from both sides of the equation.
3x^{2}+4\left(x+2\right)^{2}=12
Substitute x+2 for y in the other equation, 3x^{2}+4y^{2}=12.
3x^{2}+4\left(x^{2}+4x+4\right)=12
Square x+2.
3x^{2}+4x^{2}+16x+16=12
Multiply 4 times x^{2}+4x+4.
7x^{2}+16x+16=12
Add 3x^{2} to 4x^{2}.
7x^{2}+16x+4=0
Subtract 12 from both sides of the equation.
x=\frac{-16±\sqrt{16^{2}-4\times 7\times 4}}{2\times 7}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3+4\times 1^{2} for a, 4\times 2\times 1\times 2 for b, and 4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-16±\sqrt{256-4\times 7\times 4}}{2\times 7}
Square 4\times 2\times 1\times 2.
x=\frac{-16±\sqrt{256-28\times 4}}{2\times 7}
Multiply -4 times 3+4\times 1^{2}.
x=\frac{-16±\sqrt{256-112}}{2\times 7}
Multiply -28 times 4.
x=\frac{-16±\sqrt{144}}{2\times 7}
Add 256 to -112.
x=\frac{-16±12}{2\times 7}
Take the square root of 144.
x=\frac{-16±12}{14}
Multiply 2 times 3+4\times 1^{2}.
x=-\frac{4}{14}
Now solve the equation x=\frac{-16±12}{14} when ± is plus. Add -16 to 12.
x=-\frac{2}{7}
Reduce the fraction \frac{-4}{14} to lowest terms by extracting and canceling out 2.
x=-\frac{28}{14}
Now solve the equation x=\frac{-16±12}{14} when ± is minus. Subtract 12 from -16.
x=-2
Divide -28 by 14.
y=-\frac{2}{7}+2
There are two solutions for x: -\frac{2}{7} and -2. Substitute -\frac{2}{7} for x in the equation y=x+2 to find the corresponding solution for y that satisfies both equations.
y=\frac{12}{7}
Add -\frac{2}{7} to 2.
y=-2+2
Now substitute -2 for x in the equation y=x+2 and solve to find the corresponding solution for y that satisfies both equations.
y=0
Add -2 to 2.
y=\frac{12}{7},x=-\frac{2}{7}\text{ or }y=0,x=-2
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}