Skip to main content
Solve for x, y
Tick mark Image
Solve for x, y (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

y-kx=-4k
Consider the first equation. Subtract kx from both sides.
3x^{2}+4y^{2}=12
Consider the second equation. Multiply both sides of the equation by 12, the least common multiple of 4,3.
y+\left(-k\right)x=-4k,3x^{2}+4y^{2}=12
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
y+\left(-k\right)x=-4k
Solve y+\left(-k\right)x=-4k for y by isolating y on the left hand side of the equal sign.
y=kx-4k
Subtract \left(-k\right)x from both sides of the equation.
3x^{2}+4\left(kx-4k\right)^{2}=12
Substitute kx-4k for y in the other equation, 3x^{2}+4y^{2}=12.
3x^{2}+4\left(k^{2}x^{2}+2\left(-4k\right)kx+\left(-4k\right)^{2}\right)=12
Square kx-4k.
3x^{2}+4k^{2}x^{2}+8\left(-4k\right)kx+4\left(-4k\right)^{2}=12
Multiply 4 times k^{2}x^{2}+2\left(-4k\right)kx+\left(-4k\right)^{2}.
\left(4k^{2}+3\right)x^{2}+8\left(-4k\right)kx+4\left(-4k\right)^{2}=12
Add 3x^{2} to 4k^{2}x^{2}.
\left(4k^{2}+3\right)x^{2}+8\left(-4k\right)kx+4\left(-4k\right)^{2}-12=0
Subtract 12 from both sides of the equation.
x=\frac{-8\left(-4k\right)k±\sqrt{\left(8\left(-4k\right)k\right)^{2}-4\left(4k^{2}+3\right)\left(64k^{2}-12\right)}}{2\left(4k^{2}+3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3+4k^{2} for a, 4\times 2k\left(-4k\right) for b, and 64k^{2}-12 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-8\left(-4k\right)k±\sqrt{1024k^{4}-4\left(4k^{2}+3\right)\left(64k^{2}-12\right)}}{2\left(4k^{2}+3\right)}
Square 4\times 2k\left(-4k\right).
x=\frac{-8\left(-4k\right)k±\sqrt{1024k^{4}+\left(-16k^{2}-12\right)\left(64k^{2}-12\right)}}{2\left(4k^{2}+3\right)}
Multiply -4 times 3+4k^{2}.
x=\frac{-8\left(-4k\right)k±\sqrt{1024k^{4}+144-576k^{2}-1024k^{4}}}{2\left(4k^{2}+3\right)}
Multiply -12-16k^{2} times 64k^{2}-12.
x=\frac{-8\left(-4k\right)k±\sqrt{144-576k^{2}}}{2\left(4k^{2}+3\right)}
Add 1024k^{4} to -576k^{2}-1024k^{4}+144.
x=\frac{-8\left(-4k\right)k±12\sqrt{1-4k^{2}}}{2\left(4k^{2}+3\right)}
Take the square root of -576k^{2}+144.
x=\frac{32k^{2}±12\sqrt{1-4k^{2}}}{8k^{2}+6}
Multiply 2 times 3+4k^{2}.
x=\frac{32k^{2}+12\sqrt{1-4k^{2}}}{8k^{2}+6}
Now solve the equation x=\frac{32k^{2}±12\sqrt{1-4k^{2}}}{8k^{2}+6} when ± is plus. Add 32k^{2} to 12\sqrt{1-4k^{2}}.
x=\frac{2\left(8k^{2}+3\sqrt{1-4k^{2}}\right)}{4k^{2}+3}
Divide 32k^{2}+12\sqrt{1-4k^{2}} by 6+8k^{2}.
x=\frac{32k^{2}-12\sqrt{1-4k^{2}}}{8k^{2}+6}
Now solve the equation x=\frac{32k^{2}±12\sqrt{1-4k^{2}}}{8k^{2}+6} when ± is minus. Subtract 12\sqrt{1-4k^{2}} from 32k^{2}.
x=\frac{2\left(8k^{2}-3\sqrt{1-4k^{2}}\right)}{4k^{2}+3}
Divide 32k^{2}-12\sqrt{1-4k^{2}} by 6+8k^{2}.
y=k\times \frac{2\left(8k^{2}+3\sqrt{1-4k^{2}}\right)}{4k^{2}+3}-4k
There are two solutions for x: \frac{2\left(8k^{2}+3\sqrt{1-4k^{2}}\right)}{3+4k^{2}} and \frac{2\left(8k^{2}-3\sqrt{1-4k^{2}}\right)}{3+4k^{2}}. Substitute \frac{2\left(8k^{2}+3\sqrt{1-4k^{2}}\right)}{3+4k^{2}} for x in the equation y=kx-4k to find the corresponding solution for y that satisfies both equations.
y=\frac{2\left(8k^{2}+3\sqrt{1-4k^{2}}\right)}{4k^{2}+3}k-4k
Multiply k times \frac{2\left(8k^{2}+3\sqrt{1-4k^{2}}\right)}{3+4k^{2}}.
y=k\times \frac{2\left(8k^{2}-3\sqrt{1-4k^{2}}\right)}{4k^{2}+3}-4k
Now substitute \frac{2\left(8k^{2}-3\sqrt{1-4k^{2}}\right)}{3+4k^{2}} for x in the equation y=kx-4k and solve to find the corresponding solution for y that satisfies both equations.
y=\frac{2\left(8k^{2}-3\sqrt{1-4k^{2}}\right)}{4k^{2}+3}k-4k
Multiply k times \frac{2\left(8k^{2}-3\sqrt{1-4k^{2}}\right)}{3+4k^{2}}.
y=\frac{2\left(8k^{2}+3\sqrt{1-4k^{2}}\right)}{4k^{2}+3}k-4k,x=\frac{2\left(8k^{2}+3\sqrt{1-4k^{2}}\right)}{4k^{2}+3}\text{ or }y=\frac{2\left(8k^{2}-3\sqrt{1-4k^{2}}\right)}{4k^{2}+3}k-4k,x=\frac{2\left(8k^{2}-3\sqrt{1-4k^{2}}\right)}{4k^{2}+3}
The system is now solved.