\left\{ \begin{array} { l } { y = k x + 2 } \\ { x ^ { 2 } - y ^ { 2 } = 6 } \end{array} \right.
Solve for x, y
\left\{\begin{matrix}x=\frac{\sqrt{2}\left(\sqrt{2}k-\sqrt{5-3k^{2}}\right)}{1-k^{2}}\text{, }y=\frac{\sqrt{2}\left(-k\sqrt{5-3k^{2}}+\sqrt{2}\right)}{1-k^{2}}\text{; }x=\frac{\sqrt{2}\left(\sqrt{5-3k^{2}}+\sqrt{2}k\right)}{1-k^{2}}\text{, }y=\frac{\sqrt{2}\left(k\sqrt{5-3k^{2}}+\sqrt{2}\right)}{1-k^{2}}\text{, }&|k|\neq 1\text{ and }|k|\leq \frac{\sqrt{15}}{3}\\x=-\frac{5}{2k}\text{, }y=-\frac{1}{2}=-0.5\text{, }&|k|=1\end{matrix}\right.
Solve for x, y (complex solution)
\left\{\begin{matrix}x=\frac{\sqrt{2}\left(\sqrt{2}k-\sqrt{5-3k^{2}}\right)}{1-k^{2}}\text{, }y=\frac{\sqrt{2}\left(-k\sqrt{5-3k^{2}}+\sqrt{2}\right)}{1-k^{2}}\text{; }x=\frac{\sqrt{2}\left(\sqrt{5-3k^{2}}+\sqrt{2}k\right)}{1-k^{2}}\text{, }y=\frac{\sqrt{2}\left(k\sqrt{5-3k^{2}}+\sqrt{2}\right)}{1-k^{2}}\text{, }&k\neq 1\text{ and }k\neq -1\\x=-\frac{5}{2k}\text{, }y=-\frac{1}{2}=-0.5\text{, }&k=1\text{ or }k=-1\end{matrix}\right.
Graph
Share
Copied to clipboard
y-kx=2
Consider the first equation. Subtract kx from both sides.
y+\left(-k\right)x=2,x^{2}-y^{2}=6
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
y+\left(-k\right)x=2
Solve y+\left(-k\right)x=2 for y by isolating y on the left hand side of the equal sign.
y=kx+2
Subtract \left(-k\right)x from both sides of the equation.
x^{2}-\left(kx+2\right)^{2}=6
Substitute kx+2 for y in the other equation, x^{2}-y^{2}=6.
x^{2}-\left(k^{2}x^{2}+4kx+4\right)=6
Square kx+2.
x^{2}+\left(-k^{2}\right)x^{2}+\left(-4k\right)x-4=6
Multiply -1 times k^{2}x^{2}+4kx+4.
\left(1-k^{2}\right)x^{2}+\left(-4k\right)x-4=6
Add x^{2} to \left(-k^{2}\right)x^{2}.
\left(1-k^{2}\right)x^{2}+\left(-4k\right)x-10=0
Subtract 6 from both sides of the equation.
x=\frac{-\left(-4k\right)±\sqrt{\left(-4k\right)^{2}-4\left(1-k^{2}\right)\left(-10\right)}}{2\left(1-k^{2}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1-k^{2} for a, -2\times 2k for b, and -10 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4k\right)±\sqrt{16k^{2}-4\left(1-k^{2}\right)\left(-10\right)}}{2\left(1-k^{2}\right)}
Square -2\times 2k.
x=\frac{-\left(-4k\right)±\sqrt{16k^{2}+\left(4k^{2}-4\right)\left(-10\right)}}{2\left(1-k^{2}\right)}
Multiply -4 times 1-k^{2}.
x=\frac{-\left(-4k\right)±\sqrt{16k^{2}+40-40k^{2}}}{2\left(1-k^{2}\right)}
Multiply 4k^{2}-4 times -10.
x=\frac{-\left(-4k\right)±\sqrt{40-24k^{2}}}{2\left(1-k^{2}\right)}
Add 16k^{2} to 40-40k^{2}.
x=\frac{-\left(-4k\right)±2\sqrt{10-6k^{2}}}{2\left(1-k^{2}\right)}
Take the square root of -24k^{2}+40.
x=\frac{4k±2\sqrt{10-6k^{2}}}{2-2k^{2}}
Multiply 2 times 1-k^{2}.
x=\frac{2\sqrt{10-6k^{2}}+4k}{2-2k^{2}}
Now solve the equation x=\frac{4k±2\sqrt{10-6k^{2}}}{2-2k^{2}} when ± is plus. Add 4k to 2\sqrt{-6k^{2}+10}.
x=\frac{\sqrt{2}\left(\sqrt{5-3k^{2}}+\sqrt{2}k\right)}{1-k^{2}}
Divide 4k+2\sqrt{-6k^{2}+10} by -2k^{2}+2.
x=\frac{-2\sqrt{10-6k^{2}}+4k}{2-2k^{2}}
Now solve the equation x=\frac{4k±2\sqrt{10-6k^{2}}}{2-2k^{2}} when ± is minus. Subtract 2\sqrt{-6k^{2}+10} from 4k.
x=\frac{\sqrt{2}\left(\sqrt{2}k-\sqrt{5-3k^{2}}\right)}{1-k^{2}}
Divide 4k-2\sqrt{-6k^{2}+10} by -2k^{2}+2.
y=k\times \frac{\sqrt{2}\left(\sqrt{5-3k^{2}}+\sqrt{2}k\right)}{1-k^{2}}+2
There are two solutions for x: \frac{\sqrt{2}\left(\sqrt{2}k+\sqrt{-3k^{2}+5}\right)}{1-k^{2}} and \frac{\sqrt{2}\left(\sqrt{2}k-\sqrt{-3k^{2}+5}\right)}{1-k^{2}}. Substitute \frac{\sqrt{2}\left(\sqrt{2}k+\sqrt{-3k^{2}+5}\right)}{1-k^{2}} for x in the equation y=kx+2 to find the corresponding solution for y that satisfies both equations.
y=\frac{\sqrt{2}\left(\sqrt{5-3k^{2}}+\sqrt{2}k\right)}{1-k^{2}}k+2
Multiply k times \frac{\sqrt{2}\left(\sqrt{2}k+\sqrt{-3k^{2}+5}\right)}{1-k^{2}}.
y=2+\frac{\sqrt{2}\left(\sqrt{5-3k^{2}}+\sqrt{2}k\right)}{1-k^{2}}k
Add k\times \frac{\sqrt{2}\left(\sqrt{2}k+\sqrt{-3k^{2}+5}\right)}{1-k^{2}} to 2.
y=k\times \frac{\sqrt{2}\left(\sqrt{2}k-\sqrt{5-3k^{2}}\right)}{1-k^{2}}+2
Now substitute \frac{\sqrt{2}\left(\sqrt{2}k-\sqrt{-3k^{2}+5}\right)}{1-k^{2}} for x in the equation y=kx+2 and solve to find the corresponding solution for y that satisfies both equations.
y=\frac{\sqrt{2}\left(\sqrt{2}k-\sqrt{5-3k^{2}}\right)}{1-k^{2}}k+2
Multiply k times \frac{\sqrt{2}\left(\sqrt{2}k-\sqrt{-3k^{2}+5}\right)}{1-k^{2}}.
y=2+\frac{\sqrt{2}\left(\sqrt{2}k-\sqrt{5-3k^{2}}\right)}{1-k^{2}}k
Add k\times \frac{\sqrt{2}\left(\sqrt{2}k-\sqrt{-3k^{2}+5}\right)}{1-k^{2}} to 2.
y=2+\frac{\sqrt{2}\left(\sqrt{5-3k^{2}}+\sqrt{2}k\right)}{1-k^{2}}k,x=\frac{\sqrt{2}\left(\sqrt{5-3k^{2}}+\sqrt{2}k\right)}{1-k^{2}}\text{ or }y=2+\frac{\sqrt{2}\left(\sqrt{2}k-\sqrt{5-3k^{2}}\right)}{1-k^{2}}k,x=\frac{\sqrt{2}\left(\sqrt{2}k-\sqrt{5-3k^{2}}\right)}{1-k^{2}}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}